

Wicket in Action

Wicket in Action
MARTIJN DASHORST

EELCO HILLENIUS

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed elemental chlorine-free

Development Editor: Cynthia Kane
Manning Publications Co. Copyeditor: Tiffany Taylor
Sound View Court 3B Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-98-2
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 12 11 10 09 08

www.manning.com

 In memory of Maurice Marrink—a friend of ours
and a friend of Wicket, right from the start

brief contents
PART 1 GETTING STARTED WITH WICKET...................................1

1 ■ What is Wicket? 3

2 ■ The architecture of Wicket 24

3 ■ Building a cheesy Wicket application 45

PART 2 INGREDIENTS FOR YOUR WICKET APPLICATIONS...........79

4 ■ Understanding models 81

5 ■ Working with components:
labels, links, and repeaters 106

6 ■ Processing user input using forms 139

7 ■ Composing your pages 173

PART 3 GOING BEYOND WICKET BASICS.................................197

8 ■ Developing reusable components 199

9 ■ Images, CSS, and scripts: working with resources 223

10 ■ Rich components and Ajax 238
vii

BRIEF CONTENTSviii
PART 4 PREPARING FOR THE REAL WORLD..............................265

11 ■ Securing your application 267

12 ■ Conquer the world with l10n and i18n 282

13 ■ Multitiered architectures 299

14 ■ Putting your application into production 321

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii

PART 1 GETTING STARTED WITH WICKET.........................1

1 What is Wicket? 3
1.1 How we got here 4

A developer’s tale 4 ■ What problems does Wicket solve? 5

1.2 Wicket in a nutshell 10
Just Java 11 ■ Just HTML 12 ■ The right abstractions 13

1.3 Have a quick bite of Wicket 14
Hello, uhm … World! 15 ■ Having fun with links 17

The Wicket echo application 21

1.4 Summary 23

2 The architecture of Wicket 24
2.1 How Wicket handles requests 25

Request-handling objects 25 ■ The processing steps involved in
request handling 29 ■ Thread-safety 31
ix

CONTENTSx
2.2 Introducing Wicket components 31
The component triad 32 ■ Wicket’s Java components 33

Page: one component to rule them all 34 ■ Components
and markup 35 ■ Separation of presentation and logic:
a good thing? 38 ■ The component’s data brokers: models 39

Extending components with behaviors 42

2.3 Summary 44

3 Building a cheesy Wicket application 45
3.1 Introducing Cheesr 46

Setting up shop 46 ■ Designing the user interface 51

3.2 Creating the store front 53
Cutting to the cheese 54 ■ Adding the shopping cart 58

Going to check out 62 ■ Adding pagination to the list
of cheeses 64

3.3 Creating the checkout page 66
Adding the billing address form 67 ■ Adding validation to the
billing-address form 72 ■ Creating a reusable shopping cart 74

3.4 Summary 78

PART 2 INGREDIENTS FOR YOUR
PART 2 WICKET APPLICATIONS79

4 Understanding models 81
4.1 What are models? 82
4.2 A taste of the standard models 84

Using the simple Model 84 ■ Using PropertyModels
for dynamic models 90 ■ Saving code with
CompoundPropertyModels 92

4.3 Keeping things small and fresh: detachable models 96
What is detaching? 96 ■ Working around
a serialization problem with detachable models 98

Using LoadableDetachableModel 100

4.4 Nesting models for fun and profit 102
4.5 Summary 104

CONTENTS xi
5 Working with components: labels, links, and repeaters 106
5.1 What are components? 107
5.2 Displaying text with label components 109

Using the Label component to render text 109

Displaying multiple lines using a MultiLineLabel 111

Displaying formatted text using labels 112

5.3 Navigating using links 113
Linking to documents using static links 113

Using ExternalLink to render links programmatically 114

Linking to Wicket pages with BookmarkablePageLinks 115

Adding bookmarkable links automatically with wicket:link 119

5.4 Responding to client actions with a link 120
Using Link to respond to client actions 120

Using AjaxFallbackLink to respond to client actions 122

5.5 Using repeaters to repeat markup and components 124
Using the RepeatingView to repeat markup and components 124

Using a ListView to repeat markup and components 128

5.6 Performing common tasks with components 130
Hiding parts of a page 131 ■ Manipulating markup
attributes 133 ■ Removing excess markup 136

5.7 Summary 137

6 Processing user input using forms 139
6.1 What are forms? 140
6.2 How does form processing work? 141

Submitting a form from the browser to the server 141

Processing the form submission on the server 144

6.3 Components for text input 145
Using a TextField to process single-line text 146

Using a PasswordTextField to process a password 147

Using a TextArea to process multiline text 148

6.4 Selecting from a list of items 149
Selecting a single value from a list of choices 149

Selecting multiple values from a list of choices 152

Mapping an object to a choice and back using a
ChoiceRenderer 153 ■ Using check boxes for
boolean properties 155

CONTENTSxii
6.5 Components for submitting form data 157
Using buttons to submit data 157 ■ Using links
to submit data 158 ■ Using Ajax to submit data 159

Skipping Wicket’s form processing 161

6.6 Validating user input 162
Making a field required 162 ■ Converting user input from
strings to domain types 163 ■ Using Wicket’s supplied
validators 163 ■ Writing your own validator 165

6.7 Providing feedback 166
Feedback messages 166 ■ Using the info, error, and warn
methods for general messages 169 ■ Displaying feedback
messages using a FeedbackPanel 170

6.8 Summary 172

7 Composing your pages 173
7.1 Grouping components 174

Grouping components on a page: WebMarkupContainer 175

Reusing grouped components by creating a Panel 178

Grouping components using fragments 182

7.2 Page composition: creating a consistent layout 183
Creating consistent layouts using plain pages 184

Creating consistent layouts using markup inheritance 187

Creating consistent layouts using panels 191

Which is the best? 193

7.3 Summary 195

PART 3 GOING BEYOND WICKET BASICS197

8 Developing reusable components 199
8.1 Why create custom reusable components? 200
8.2 Creating a component that selects the current locale 200

What are reusable custom components? 201 ■ Implementing the
locale-selector component 202 ■ Creating a compound
component 204 ■ Adding a Reset link 207

8.3 Developing a compound component:
DateTimeField 208
Composite input components 209 ■ Embedding form
components 209 ■ Synchronizing the models of the
embedded components 211

CONTENTS xiii
8.4 Developing a discount list component 213
The container 214 ■ The read-only discounts list 216

The edit-discounts list 217

8.5 Summary 221

9 Images, CSS, and scripts: working with resources 223
9.1 Using packaged resources 224

Including packaged resources using auto-linking 226

9.2 Building export functionality as a resource 226
Creating the resource 227 ■ Letting a component
host the resource 228 ■ Making the export available
as a shared resource 229 ■ Initializing the
shared resource 230 ■ An alternative
implementation 231

9.3 Resources and third-party libraries 232
A JCaptcha image component 232 ■ Implementing a complete
JCaptcha form 234

9.4 Summary 236

10 Rich components and Ajax 238
10.1 Asynchronous JavaScript and XML (Ajax) 239

Ajax explained 239 ■ Ajax support in Wicket 242

Ajax components 243 ■ Ajax behaviors 245

10.2 Header contributions 247
Using header-contributing behaviors 248 ■ Using the
header contributor interface 249 ■ Using the
wicket:head tag 250

10.3 Ajaxifying the cheese discounts 251
Implementing in-place editing 251 ■ Refactoring the
discount list 252 ■ How AjaxEditableLabel works 254

10.4 Creating your own Ajax components 258
Using third-party Ajax engines 258

Detecting client capabilities 261

10.5 Gotchas when working with Wicket and Ajax 262
10.6 Summary 264

CONTENTSxiv
PART 4 PREPARING FOR THE REAL WORLD265

11 Securing your application 267
11.1 Session-relative pages 268
11.2 Implementing authentication 269

Keeping track of the user 269 ■ Authenticating
the user 270 ■ Building a user panel 272

Building a page for signing out 273

11.3 Implementing authorization 274
Introducing authorization strategies 274 ■ Protecting the
discounts page 276 ■ Disabling the Edit link for
unauthorized users 278

11.4 Summary 281

12 Conquer the world with l10n and i18n 282
12.1 Supporting multiple languages 284

Localizing the UserPanel 284 ■ Using <wicket:message>
tags 285 ■ The message-lookup algorithm 288

Localized markup files 289

12.2 Customizing resource loading 291
12.3 Localized conversions 293

Wicket converters 293 ■ Custom converters 295

12.4 Summary 298

13 Multitiered architectures 299
13.1 Introducing the three-tiered service architecture 300

Advantages of utilizing a layered architecture 301

Who is in charge of the dependencies? 301 ■ Code without
dependency injection 302 ■ Dependency injection
to the rescue 303

13.2 Layering Wicket applications using Spring 304
Spring time! 305 ■ The simplest way to configure
Wicket to use Spring 306 ■ Using proxies instead of direct
references 307 ■ Using proxies from the wicket-spring project 308

Wicket’s Spring bean annotations 309 ■ Using Spring bean
annotations with objects that aren’t Wicket components 312

CONTENTS xv
13.3 Implementing the data tier using Hibernate 313
Introducing Hibernate 314 ■ Configuring Hibernate 314

Implementing data access objects using Hibernate 316

Wicket/Hibernate pitfalls 317

13.4 Summary 319

14 Putting your application into production 321
14.1 Testing your Wicket application 322

Unit-testing Hello, World 322 ■ Having fun with link tests 324

Testing the Wicket Echo application 326 ■ Testing validators on
Cheesr’s checkout page 327 ■ Testing a panel directly with the
ShoppingCartPanel 328

14.2 Optimizing URLs for search engines and visitors 330
Bookmarkable requests vs. session-relative requests 330

Extreme URL makeover: mounting and URL encodings 332

14.3 Configuring your application for production 336
Switching to deployment mode for optimal performance 336

Providing meaningful error pages 341

14.4 Knowing what is happening in your application 344
Logging requests with RequestLogger 344

Using JMX to work under the hood while driving 347

14.5 Summary 350

index 351

foreword
In the spring of 2004, I was working on a startup idea with Miko Matsumura, whom I
met in 1997 when he was Sun’s Chief Java Evangelist. This particular idea was called
Voicetribe (a name I have since used for another startup) and involved VOIP and cell
phone technologies (and might still one day make a good startup). Unfortunately,
even in the earliest stages of prototyping this system, I found myself extremely frus-
trated by then-existing Java web-tier technologies. This brought my attention to a tech-
nically interesting infrastructure problem that nobody had yet solved to my full
satisfaction: web frameworks.

 Several 60-hour weeks later, the first version of Wicket was born. (In case you’re
wondering, Wicket was the first fun and unique-sounding short word that Miko also
liked and that wasn’t being used for a major software project. It also appears in some
dictionaries as a cricket term for “a small framework at which the bowler aims the
ball.”) I’m happy to say that after more than four years and the input of many man-
years of effort from the open source community, Wicket now meets most if not all of
my criteria for a web framework.

 Although Wicket has grown into a sophisticated piece of technology that has
extended my original vision in every direction, I feel the community that has formed
around Wicket is even more impressive. That community began when I made Wicket
open source under the Apache license on Codehaus. A group of programmers from the
Dutch consulting firm Topicus, led by Eelco Hillenius, Martijn Dashorst, and Johan
Compagner, saw the potential in Wicket and were inspired to join Juergen Donnerstag
and Chris Turner in forming the core team that would propel the project forward.
xvii

FOREWORDxviii
 This core team has now been extended to include a dozen other top-notch engi-
neers and scores of individual contributors, but there was an intense period in those
first months in which the Wicket vision and the Wicket team gelled into something
special. To this day, the core development team, the wicket-user mailing list, and the
Wicket IRC channel (##wicket) are a reflection of the energy and enthusiasm of this
original group. Today, Nabble.com shows wicket-user as one of the most actively traf-
ficked mailing lists in the Java space (third only to Java.net and Netbeans) and the sin-
gle most actively trafficked web-framework mailing list in the Java space (even more
than Ruby on Rails, by a wide margin). This traffic is a reflection of countless hours of
helpful support, brainstorming, negotiation, and open design work. I’m thankful to
the global community that has invested so much in Wicket.

 This growing Wicket community is now in the process of bursting out all over the
web—and blog posts, download statistics, new projects, user groups, and articles in the
press reflect that. Startups like Thoof, Joost, Sell@Market, GenieTown, and B-Side;
midsized companies like Vegas.com, LeapFrog, TeachScape, Servoy, and Hippo; and
large companies like IBM, Tom-Tom, Nikon, VeriSign, Amazon, and SAS are all joining
the Wicket community, whether for large, scalable front-end websites or internal
projects with a high degree of UI complexity.

 Although Wicket was born once in my study and again in the open source commu-
nity (and in particular in its migration to Apache), it’s now being born one final time,
because a framework without an authoritative book somehow isn’t quite “real.” I’ve
been watching from the sidelines for over a year as Martijn and Eelco have slavishly
devoted long nights and weekends to write the book you’re now reading. Wicket in
Action is the complete and authoritative guide to Wicket, written and reviewed by the
core members of the Apache Wicket team. If there’s anything you want to know about
Wicket, you are sure to find it in this book, described completely and accurately—and
with the sense of humor and play that the Dutch seem to bring to everything.

 Enjoy!
 JONATHAN LOCKE

 Founder of Apache Wicket

preface
In 2004, we had a good idea what was wrong with the web frameworks we’d been using
(Struts and Maverick) at Topicus for a number of our projects. They didn’t scale for
development, they made refactoring hard, and they inhibited reuse, to name a few of
our complaints. Just about everyone in our company agreed that developing web
applications with Java wasn’t a lot of fun, particularly when it came to the web part;
and those with experience in programming desktop applications wondered about the
huge gap between the programming models of, say, Swing and Struts.

 After a long search, one of our colleagues, Johan Compagner, stumbled across
Wicket, which had been made publicly available by Jonathan Locke a few weeks ear-
lier. Although it was still an alpha version and far from being ready to be used in our
projects, everyone involved in the framework quest recognized its potential. We
decided to start a prototype with it, and unless the prototype turned out to be hugely
disappointing, this would be the framework for future projects.

 Our personal involvement in Wicket came about suddenly when, a few weeks after
our discovery, Jonathan announced that he planned to drop the project and accept a
new position at Microsoft; he felt that continuing to work on Wicket might be a con-
flict of interest. We quickly got a group of people together—Johan Compagner, Juer-
gen Donnerstag, Chris Turner, and the two of us—and took over the project. As it
turned out, Jonathan’s job was short lived due to other conflicting interests (regard-
ing a startup he co-owns), and he was soon back on the Wicket project.

 We spent our evenings over the next few months ramping up for the first Wicket
version; during the day, we used Wicket for a first real project. The fact that Topicus
xix

PREFACExx
allowed us to do that has made all the difference for Wicket; it wouldn’t otherwise
have become so good so quickly. We believe the investment has paid back tenfold.

 Soon after the 1.0 version was released, we started to promote Wicket on Java com-
munity sites like The Server Side and JavaLobby. After all, the more users an open
source project has, the more testing hours it gets, and the greater the chance that cor-
ner cases will be well-covered; and, in the long run, projects need enough people to
continue when the interests or priorities of older members shift.

 The feedback we got from those first promotions wasn’t always positive. Most peo-
ple liked the programming model, but some had objections: that we should have
been supportive of the proposed standard web framework for Java (JSF), that a state-
ful programming model wouldn’t scale, and—last but not least—that we were lacking
documentation.

 With a few notable exceptions, most open source projects are poorly documented.
These projects are worked on by software engineers, not copy writers, and most of
them (including us) prefer to write code instead of manuals, especially when doing it
in their spare time.

 Wicket has had pretty good API docs from the start, and the code is well organized,
but the documentation was sparse at that time. And even though the community has con-
tributed enormously to our wiki, and most of the questions you’ll ever have about Wicket
can be found in the mailing-list archives, Wicket still lacks a well-written online tutorial
(although you can find several on the internet, focused on specific topics).

 We launched several initiatives for writing a good tutorial. We tried to write one
ourselves, but improving the code always felt more important. We tried to get writers
to join us. Alas! Although we had a few candidates, their endeavors turned out to be
short lived. We realized that the only way there would ever be authoritative documen-
tation on Wicket would be for us to write a book. Yep, that’s the book you’re reading
right now!

acknowledgments
First of all, we’re immensely grateful to everyone who has helped make Wicket a success.
Jonathan Locke for envisioning and architecting the framework, and for being our
mentor in the first stages of the project. The initial team for getting Wicket 1.0 realized.
Later members Gwyn Evans, Igor Vaynberg, Matej Knopp, Al Maw, Janne Hietamäki,
Frank Bille Jensen, Ate Douma, Gerolf Seitz, Timo Rantalaiho, Jean-Baptiste Quenot,
and Maurice Marrink, for putting in monstrous amounts of energy to make Wicket into
the kick-ass framework it is today. Supportive decision-makers like Kees Mastenbroek,
Harry Romkema, Leo Essing, and Henk Jan Knol of Topicus; Jan Blok of Servoy; and
Evan Eustace of Teachscape for providing us with the opportunity to use Wicket in seri-
ous projects at an early stage. Wouter de Jong and Vincent van den Noort for designing
the logo and look and feel of the website. Klaasjan Brand for being our toughest critic
and making us think hard about our weaknesses compared to JSF. Geertjan Wielenga,
R.J. Lorimer, Kent Tong, Karthik Gurumurthy, Nick Heudecker, Peter Thomas,
Timothy M. O’Brien, Erik van Oosten, Justin Lee, Romain Guy, Tim Boudreau, Miko
Matsumura, Daniel Spiewak, Nathan Hamblen, Jan Kriesten, Nino Saturnino Martinez
Vazquez Wael, Cemal Bayramoglu, James Carman, and many others for writing blogs,
articles, and books about Wicket, giving presentations on it, and promoting the frame-
work in other ways. Niclas Hedhman, Bertrand Delacretaz, Sylvain Wallez, Upayavira,
Arjé Cahn, Alex Karasulu, and Timothy Bennet, who supported us in our journey to
become a top-level Apache project. Ari Zilka, Orion Letizi, and others from Terracotta
for giving Wicket a viable scaling strategy. The folks from NetBeans for building in basic
Wicket support in their IDE and using Wicket for examples and talks.
xxi

ACKNOWLEDGMENTSxxii
 And then there are the hundreds of people who have contributed to the wiki, created
Wicket support projects or spin-offs, helped out on the mailing list and the IRC channel,
and submitted patches for bugs and feature requests. We believe Wicket is the poster
child of a successful open source community, and Wicket would not be one of the lead-
ing web frameworks it is today without all those people participating in the project.

 We wouldn’t have been able to pull it off without the support of our home front.
Diana, Kay, and Veronique, thank you so much for being supportive and pressing us
to go on writing when we were on the brink of giving up.

 We’d also like to thank those who were directly involved in the creation of this
book. Publisher Marjan Bace of Manning Publications for his trust in us. Cynthia
Kane, our editor, for the excellent suggestions and relentless criticism: we truly believe
you made a huge impact on the quality of this book! Thanks also to Peter Thomas,
our technical editor, and to Karen Tegtmeyer, Tiffany Taylor, and Elizabeth Martin of
our production team at Manning.

 Finally, we’d like to thank Jonathan Locke for reviewing our manuscript and writing
the foreword as well as our peer reviewers for taking the time to read our manuscript in
various stages of development and to provide invaluable feedback. You contributed
greatly to making this the best book we could write: Jeff Cunningham, Evan Eustace, Bill
Fly, Nathan Hamblen, Phil Hanna, Chris Johnston, Matthew Payne, George Peter,
Michiel Schipper, Chris Turner, Erik van Oosten, and Chris Wilkes.

about this book
Wicket is a framework that makes building web applications easier and more fun. It
boasts an object-oriented programming model that encourages you to write maintain-
able code and helps you scale your development effort with its facilities for reusable
components and separation of concerns.

 This book will show you how Wicket works and how you can use it effectively to write
web applications, and it will point out the occasional gotcha. It covers a broad range of
topics relevant to programmers who are in the business of building web applications.

Roadmap
The book is organized in four parts:

■ Part 1—Getting started with Wicket
■ Part 2—Ingredients for your Wicket applications
■ Part 3—Going beyond Wicket basics
■ Part 4—Preparing for the real world

If you’re new to Wicket, you’re probably best off following the sections (and chapters)
in order.

 Chapters 1 and 2 give you a high-level overview of what Wicket is and what kind of
problems it tries to solve. If you’re already experienced with Wicket, you should still
read the first two chapters, because they explain the framework from our perspective.
Chapter 3 gives you a quick example of how to develop an application with Wicket. After
reading this chapter, you’ll have a good idea of what developing with Wicket looks like,
xxiii

ABOUT THIS BOOKxxiv
and although the chapter doesn’t explain all the code in detail, you’ll pick up a few
things intuitively.

 Part 2 covers you all you need to know to develop straightforward web applications
with Wicket. Chapter 4 starts out with an in-depth explanation of models, which is
something many people struggle with when they begin using Wicket. Chapters 5 and 6
talk about the components you’ll use no matter what kind of application you’re build-
ing: labels, links, repeaters, forms, and form components. Chapter 7 discusses effective
strategies to build your pages from smaller parts, and how to apply a consistent layout.

 Parts 3 and 4 go into specific areas that can be relevant when you develop non-
trivial web applications, like localization and component-level security. This is where
you’ll learn how to take Wicket to the next level. Chapter 8 explains the advantages of
organizing your Wicket-based projects around reusable components. Chapters 9–12
explore additional techniques that you can use to develop sophisticated Wicket appli-
cations: shared resources, Ajax, security, and localization. These techniques are
explained by themselves and also in the context of reusable components, using a grad-
ually evolving example. Chapters 13 and 14 talk about the practical matters of how to
fit your Wicket code in with the rest of your architecture, how to test pages and com-
ponents, how to map URLs for bookmarkability and search engines, and how to tweak
and monitor your Wicket configuration for the best performance.

 In addition to these chapters we also provided a free bonus chapter titled “Setting
up a Wicket project.” In this chapter you’ll learn how a Wicket application is struc-
tured and how you can build your Wicket application using the open source build
tools Ant or Maven. You can obtain this chapter from the publisher’s website at http://
manning.com/dashorst.

Who should read this book?
If you’re considering using Wicket to write web applications, or you’re already doing so
but would like to have a better understanding of the framework and how to best utilize
it, this is the book for you. This book can be a good read for tech-savvy managers and
architects who are in the process of selecting a web framework, and for anyone who is
interested in web application frameworks. Finally, we invite our moms to read along.

Code
Most of the source code in this book is part of a Google Code project you can find at
http://code.google.com/p/wicketinaction/, and which is ASF 2.0 licensed.

 We aimed for a smooth narrative by employing an evolving example throughout
the chapters. We hope the examples, which talk about a cheese store, aren’t too far
fetched; we tried to make the book fun for you to read while addressing the technical
nuances we had in mind.

 The downloadable source code is structured in packages that reflect the chapters
so that you can easily play with the code while reading the book. Trying things for
yourself is a great way to learn technology.

ABOUT THIS BOOK xxv
 The code in this book is pretty much printed as is, with the exception of the
imports that are needed to compile the code. You can find those imports in the Goo-
gle Code project, although in most cases asking your IDE to autocomplete them for
you should work fine.

 You can also download the source code from the publisher’s website at www.man-
ning.com/WicketinAction or www.manning.com/dashorst.

Author Online
Purchase of Wicket in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the lead author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/WicketinAction or
www.manning.com/dashorst. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors
MARTIJN DASHORST is a software engineer with more than 10 years of experience in
software development. He has been actively involved in the Wicket project since it was
open-sourced and has presented Wicket as a speaker at numerous conferences,
including JavaOne and JavaPolis.

EELCO HILLENIUS is an experienced software developer who has been part of Wicket’s
core team almost from the start. He works for Teachscape, where he is helping to
build the next e-learning platform. A Dutch native, he currently lives in Seattle.

About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learn-
ing to become permanent it must pass through stages of exploration, play, and, interest-
ingly, retelling of what is being learned. People understand and remember new things,
which is to say they master them, only after actively exploring them. Humans learn in

http://www.manning.com/WicketinAction
http://www.manning.com/WicketinAction
http://www.manning.com/dashorst
http://www.manning.com/dashorst

ABOUT THIS BOOKxxvi
action. An essential part of an In Action book is that it’s example-driven. It encourages
the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.

About the cover illustration
The figure on the cover of Wicket in Action is taken from the 1805 edition of Sylvain
Maréchal’s four-volume compendium of regional dress customs. This book was first
published in Paris in 1788, one year before the French Revolution. Each illustration is
finely drawn and colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally
apart the world’s towns and regions were just 200 years ago. Isolated from each other,
people spoke different dialects and languages. In the streets or the countryside, they
were easy to place—sometimes with an error of no more than a dozen miles--just by
their dress.

 Dress codes have changed everywhere with time and the diversity by region, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life--certainly for a more varied and fast-paced technologi-
cal life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Part 1

Getting started with Wicket

This part of the book prepares you to build Wicket applications quickly.
After reading part 1, you should be able to start playing with Wicket using the
examples as a guide. Chapter 1 introduces the Wicket framework and explains
the principles at Wicket’s core. It ends with examples showcasing the basic usage
of Wicket components. Wicket’s fundamentals and how they fit together are dis-
cussed in chapter 2—how Wicket processes a request, and which classes play a
central role in handling requests. In chapter 3, you’ll build an online cheese
store. In the process, you’ll learn about Wicket’s components, apply Ajax, and
build your first custom component.

What is Wicket?
The title of this chapter poses a question that a billion
people would be happy to answer—and would get
wrong! Due to the popularity of the game of cricket
throughout the world, most of those people would say
that a wicket is part of the equipment used in the
sport (see figure 1.1 to see what a wicket is in the
cricket sense). Cricket is a bat-and-ball sport much like
baseball, but more complicated to the untrained eye.
The game is popular in the United Kingdom and
South Asia; it’s by far the most popular sport in several
countries, including India and Pakistan.

 Keen Star Wars fans would say that Wicket is a
furry creature called an Ewok from the forest moon

In this chapter:
■ A brief history of Wicket
■ Solving the problems of web development
■ Just Java + just HTML = Wicket
■ A few examples as a gentle introduction

Figure 1.1 A cricket wicket:
a set of three stumps topped
by bails. This isn’t the topic of
this book.
3

4 CHAPTER 1 What is Wicket?
Endor. True Star Wars fans would also say that Ewoks were invented for merchan-
dising purposes and that the movie could do well without them, thank you very
much. However, Star Wars fans would also be proved wrong by their favorite search
engine (see figure 1.2, showing a search for wicket on Google).

 What Google and other search engines list as their top result for the term wicket
isn’t related to 22 people in white suits running on a green field after a red ball, nor to
a furry alien creature capable of slaying elite commandos of the Empire with sticks
and stones. Instead, they list a website dedicated to a popular open source web-appli-
cation framework for the Java platform.

1.1 How we got here
Don’t get us wrong. Many people think cricket is a great sport, once you understand
the rules. But in this book we’ll stick to something easier to grasp and talk about—the
software framework that appears as the first search result: Apache Wicket.

 Before going into the details of what Wicket is, we’d like to share the story of how
we got involved with it.

1.1.1 A developer’s tale

It was one of those projects.
 The analysts on our development team entered the meeting room in a cheerful

mood. We’d been working for months on a web application, and the analysts had

Figure 1.2 Google search results for wicket. The number one result has nothing
to do with cricket or with the furry and highly dangerous inhabitants of Endor.

5How we got here
demoed a development version to clients the day before. The demo had gone well,
and the clients were satisfied with our progress—to a degree.

 Watching the application in action for the first time, the clients wanted a wizard
instead of a single form there. An extra row of tabs in that place, and a filter function
there, there, and there.

 The developers weren’t amused. “Why didn’t you think about a wizard earlier?” “Do
you have any idea how much work it will take to implement that extra row of tabs?”
They were angry with the analysts for agreeing so easily to change the requirements,
and the analysts were upset with the developers for making such a big deal of it.

 The analysts didn’t realize the technical implications of these change requests; and
frankly, the requests didn’t seem outrageous on the surface. Things, of course, aren’t
always as simple as they seem. To meet the new requirements, we would have to rewire
and/or rewrite the actions and navigations for our Struts-like framework and come up
with new hacks to get the hard parts done. Introducing an extra row of tabs would
mean rewriting about a quarter of our templates, and our Java IDE (integrated devel-
opment environment) wouldn’t help much with that. Implementing the changes was
going to take weeks and would generate a lot of frustration, not to mention bugs. Just
as we’d experienced in previous web projects, we had arrived in maintenance hell—
well before ever reaching version 1.0.

 In order to have any hope of developing web applications in a more productive
and maintainable fashion, we would need to do things differently. We spent the next
year looking into almost every framework we came across. Some, like Echo, JavaServer
Faces (JSF), and Tapestry, came close to what we wanted, but they never clicked with
us. Then, one afternoon, Johan Compagner stormed into our office with the mes-
sage that he had found the framework we’d been looking for; he pointed us to the
Wicket website.

 And that’s how we found Wicket.
 Let’s first look at what issues Wicket tries to solve.

1.1.2 What problems does Wicket solve?
Wicket bridges the impedance mismatch between the stateless HTTP and stateful
server-side programming in Java.

 When you program in Java, you never have to think about how the Java Virtual
Machine (JVM) manages object instances and member variables. In contrast, when
you create websites on top of HTTP, you need to manage all of your user interface or
session state manually.

 Until we started using Wicket, we didn’t know exactly what was wrong with the way
we developed web applications. We followed what is commonly called the Model 2 or
web MVC approach, of which Apache Struts is probably the most famous example. With
frameworks like Spring MVC, WebWork, and Stripes competing for the Struts crowd,
this approach remains prevalent.

 Model 2 frameworks map URLs to controller objects that decide what to do with
the input and what to display to the user. Conceptually, if you don’t use Model 2 and

6 CHAPTER 1 What is Wicket?
instead use plain JavaServer Pages (JSP), a request/response pair looks like what you
see in figure 1.3.

 A client sends a request directly to a JSP, which then directly returns a response.
 When you use a Model 2 framework, the request/response cycle looks roughly like

figure 1.4.
 Here, requests are caught by the framework, which dispatches them to the appro-

priate controllers (like LoginAction in figure 1.4). Controllers in turn decide which
of the possible views should be shown to the client (typically, a view is nothing but
a JSP).

 The main feature of Model 2 frameworks is the decoupling of application flow
from presentation. Other than that, Model 2 frameworks closely follow HTTP’s
request/response cycles. And these HTTP request/response cycles are crude. They
stem from what the World Wide Web was originally designed for: serving HTML docu-
ments and other resources that can refer to each other using hyperlinks. When you

client
request (GET /login.jsp)

response

<html>
 <body>
 Login: <input
type="text"
...

login.jsp

Figure 1.3 A request/response pair for a JSP-based application

client Framework
request (GET /login.do)

LoginAction
<html>
 <body>
 Login: <input
type="text"
...

login.jsp

call

response

Figure 1.4 A Model 2 framework lets the controllers decide what views to render.

7How we got here
click a hyperlink, you request another document/resource. The state of what is being
requested from the server is irrelevant.

 As it turns out, what works well for documents doesn’t work well for applications.
WEB APPLICATIONS

Many websites host web applications: full-fledged applications that differ from desktop
applications only in that they run in a browser. For example, figure 1.5 shows the web
application Eelco is currently working on.

 If you look at this figure, you should easily be able to identify user interface (UI)
elements like tabs, panels, and buttons. The screen is highly dynamic and interactive,
and it hardly resembles a static document, as you can imagine.

 If you used this application, you’d expect it to work like a desktop application. If
you clicked the Components Available to Members tab, you’d expect the selections
and navigation you’d performed so far (in the figure, choosing Manage Workspaces >
Groups > Members) to stay the same and not be lost, as you can see in figure 1.6.

 Those selected tabs are part of the application’s state, which should be available
over the course of multiple requests: it wouldn’t be nice for the selected tabs to
change when, for example, the user removes a comment.

 A natural way of implementing such screens involves breaking them into panels
with tabs, where each panel knows which one of its tabs is selected. Such an approach
could look like this code fragment:

Figure 1.5 An example of a web application. This figure shows a screen from Teachscape, a learning-
management application used by school districts throughout the United States.

8 CHAPTER 1 What is Wicket?
public class GroupPanel extends Panel {
 private Tab selectedTab;
 ...
 public void select(Tab tab) { this.selectedTab = tab; }
}

The selectedTab member variable represents the currently selected tab for the panel.
Switching to another tab could look like this:

groupPanel.select(new AccountsInGroupTab("tab"));

Each panel or tab is represented by a Java class. Most people would agree that this
code seems natural and object-oriented. If you’ve ever used UI frameworks for desk-
top applications, such as Swing or SWT, code like this probably looks familiar.

 Unfortunately, most web-application frameworks don’t facilitate writing such
straightforward code. The main reason is that they don’t provide a stateful program-
ming model on top of the stateless HTTP. In other words, you’re on your own when it
comes to managing state in your web application.
HTTP: THE STATELESS PROTOCOL

HTTP provides no support for extended interaction or conversations between a client
and a server. Each request is always treated as independent in the sense that there is
no relationship with any previous request. Requests have no knowledge of the applica-
tion state on the server.

 The obvious reason for designing the protocol like this is that it scales well.
Because servers don’t need to keep track of previous requests, any server can handle

Figure 1.6 The web application after the Components Available to Members tab is clicked

9How we got here
requests as long as it has the resources the client asks for. That means it’s easy to use
clusters of servers to handle these requests. Growing and shrinking such clusters is as
easy as plugging in and unplugging machines, and distributing load over the cluster
nodes (an activity called load balancing) can be performed based on how busy each
node is.

 But when it comes to web applications, we have to care about conversations and
the state that gets accumulated when users interact with the application. Think about
the tabs shown in the previous example, wizards, pageable lists, sortable tables, shop-
ping carts, and so on.

 One common approach to implementing conversational websites is to encode
state in URLs.
ENCODING STATE WITHIN URLS

When you can’t keep state on the server, you have to get it from the client. This is typ-
ically achieved by encoding that state within the URLs as request parameters. For
example, a link to activate the Components Available to Members tab, where the link
encodes the information of which other tabs are selected, could look like this:

'/tsp/web?lefttab=mngworkspaces&ctab=groups<ab=members&rtab=comps'

This URL carries all the information needed to display the selected tabs by identifying
which tabs are selected on the left, center, right, and so on. Encoding state in URLs fol-
lows the recommended pattern of web development as described, for instance, in Roy
T. Fielding’s seminal dissertation on Representational State Transfer (REST).1 It makes
sense from a scalability point of view; but when you’re in the business of building web
applications, encoding state in your URLs has some significant disadvantages, which
we’ll look at next.

 For starters, encoding state in your URLs can be a security concern. Because you
don’t have complete control over the clients, you can’t assume that all requests are
genuine and nonmalicious. What if the application has an Authorization tab that
should be available only for administrators? What is to stop users or programs from
trying to guess the URL for that function? Encoding state in URLs makes your applica-
tions unsafe by default, and securing them has to be a deliberate, ongoing activity.

 This approach of carrying all state in URLs limits the way you can modularize your
software. Every link and every form on a page must know the state of everything else
on the page in order for you to build URLs that carry the state. This means you can’t
move a panel to another page and expect it to work, and you can’t break your pages
into independent parts. You have fewer options to partition your work, which inhibits
reuse and maintainability.

 Finally, when you hold state within URLs, that state has to be encoded as strings
and decoded from strings back to objects. Even if you’re interested in, for instance, a
member or workspace object, you must still create a string representation of the
object. Doing so can require a lot of work and isn’t always practical.

1 See http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

10 CHAPTER 1 What is Wicket?
 Fortunately, it’s widely acknowledged that transferring state via URLs isn’t always
the best way to go, which is why all mature web technologies support the concept
of sessions.
SESSION SUPPORT

A session is a conversation that (typically) starts when a user first accesses a site and
ends either explicitly (such as when the user clicks a Logout link) or through a time-
out. Java’s session support for web applications is implemented through the Servlet
API’s HttpSession objects. Servlet containers are responsible for keeping track of
each user session and the corresponding session objects, and this is normally done
using nothing but hash maps on the server.

 Can you set the current tab selections in the session and be done with it? You
could, but it’s not an approach we recommend. Apart from minor caveats such as pos-
sible key collisions, the main problem with putting all your state in the session in an ad
hoc fashion is that you can never predict exactly how a user will navigate through your
website. Browsers support back and forward buttons, and users can go directly to URLs
via bookmarks or the location bar. You don’t know at what points you can clean up
variables in your session, and that makes server-side memory usage hard to manage.
Putting all your state in a shared hash map isn’t exactly what can be considered ele-
gant programming.

 If you use Wicket, deciding how to pass state is a worry of the past. Wicket will man-
age your state transparently.
ENTER WICKET

Much like Object Relational Mapping (ORM) technologies such as Hibernate and
TopLink try to address the impedance mismatch between relational databases and
object-oriented (OO) Java programming, Wicket aims to solve the impedance mis-
match between the stateless HTTP protocol and OO Java programming. This is an
ambitious goal, and it’s not the path of least resistance. Traditional approaches to
building applications against a protocol designed for documents and other static
resources rather than for applications is such a waste of development resources, and
leads to such brittle and hard-to-maintain software, that we feel it needs fixing.

 Wicket’s solution to the impedance mismatch problem is to provide a program-
ming model that hides the fact that you’re working on a stateless protocol. Building a
web application with Wicket for the most part feels like regular Java programming. In
the next section, we’ll look at Wicket’s programming model.

1.2 Wicket in a nutshell
Wicket lets you develop web applications using regular OO Java programming. Because
objects are stateful by default (remember: objects = state + behavior), one of Wicket’s
main features is state management. You want this to be transparent so you don’t need to
worry about managing state all the time. Wicket aims to provide a programming model
that shields you from the underlying technology (HTTP) as far as possible so you can
concentrate on solving business problems rather than writing plumbing code.

11Wicket in a nutshell
 With Wicket, you program in just Java and just HTML using meaningful abstractions.
 That sentence pretty much sums up the programming model. We can break it into

three parts: just Java, just HTML, and meaningful abstractions. Let’s look at these parts
separately in the next few sections.

1.2.1 Just Java

Wicket lets you program your components and pages using regular Java constructs.
You create components using the new keyword, create hierarchies by adding child
components to parents, and use the extend keyword to inherit the functionality of
other components.

 Wicket isn’t trying to offer a development experience that reduces or eliminates reg-
ular programming. On the contrary, it tries to leverage Java programming to the max.
That enables you to take full advantage of the language’s strengths and the numerous
IDEs available for it. You can use OO constructs and rely on static typing, and you can use
IDE facilities for things like refactoring, auto-complete, and code navigation.

 The fact that you can decide how your components are created gives you an
unmatched level of flexibility. For instance, you can code your pages and components in
such a fashion that they require certain arguments to be passed in. Here’s an example:

public class EditPersonLink extends Link {

 private final Person person;

 public EditPersonLink(String id, Person person) {
 super(id);
 this.person = person;
 }

 public void onClick() {
 setResponsePage(new EditPersonPage(person));
 }
}

This code fragment defines a Wicket component that forces its users to create it with a
Person instance passed in the constructor. As a writer of that component, you don’t
have to care about the context it’s used in, because you know you’ll have a Person
object available when you need it.

 Also notice that the onClick method, which will be called in a different request
than when the link was constructed, uses the same Person object provided in the
link’s constructor. Wicket makes this kind of straightforward programming possible.
You don’t have to think about the fact that behind the scenes, state between requests
is managed by Wicket. It just works.

 Although Java is great for implementing the behavior of web applications, it isn’t
perfect for maintaining things like layout. In the next section, we’ll look at how
Wicket uses plain old HTML to maintain the presentation code.

12 CHAPTER 1 What is Wicket?
1.2.2 Just HTML

When you’re coding with Wicket, the presentation part of your web application is
defined in HTML templates. Here we arrive at another thing that sets Wicket apart
from most frameworks: it forces its users to use clean templates. Wicket enforces the
requirement that the HTML templates you use contain only static presentation code
(markup) and some placeholders where Wicket components are hooked in.

 Other frameworks may have best practices documented that discourage the use of
scripts or logic within templates. But Wicket doesn’t just reduce the likelihood of logic
creeping into the presentation templates—it eliminates the possibility altogether.

 For instance, with Wicket you’ll never code anything like the following (JSP) fragment:

<table>
 <tr>
 <c:forEach var="item" items="${sessionScope.list}">
 <td>
 <c:out value="item.name" />
 </td>
 </c:forEach>
 </tr>
</table>

Nor will you see code like the following Apache Velocity fragment:

<table>
 <tr>
 #foreach ($item in $sessionScope.list)
 <td>
 ${item.name}
 </td>
 #end
 </tr>
</table>

Nor will it look like the following JSF fragment:

<h:dataTable value="#{list}" var="item">
 <h:column>
 <h:outputText value="#{item.name}"/>
 </h:column>
</h:dataTable>

With Wicket, the code looks like this:

<table>
 <tr>
 <td wicket:id="list">

 </td>
 </tr>
</table>

If you’re used to one of the first three fragments, the way you code with Wicket may
appear quite different at first. With JSPs, you have to make sure the context (page,

13Wicket in a nutshell
request, and session attributes) is populated with the objects you need in your page.
You can add loops, conditional parts, and so on to your JSP without ever going back to
the Java code.

 In contrast, with Wicket you have to know the structure of your page up front. In
the previous markup example, a list view component would have to be added to the
page with the identifier list; and for every row of the list view, you must have a child
component with an identifier name.

 The way you code JSPs looks easier, doesn’t it? Why did Wicket choose that rigid
separation between presentation and logic?

 After using the JSP style of development (including WebMacro and Apache Veloc-
ity) for many commercial projects, we believe mixing logic and presentation in tem-
plates has the following problems:

■ Scripting in templates can result in spaghetti code. The previous example looks
fine, but often you want to do much more complex things in real-life web appli-
cations. The code can get incredibly verbose, and it can be hard to distinguish
between pieces of logic and pieces of normal HTML; the whole template may
become hard to read (and thus hard to maintain).

■ If you code logic with scripts, the compiler won’t help you with refactoring,
stepping through and navigating the logic, and avoiding stupid things like syn-
tax errors.

■ It’s harder to work with designers. If you work with separate web designers (like
we do), they’ll have a difficult time figuring out JSP-like templates. Rather than
staying focused on their job—the presentation and look and feel of the applica-
tion—they have to understand at least the basics of the scripting language that
the templating engine supports, including tag libraries, magical objects (like
Velocity Tools, if you use that), and so on. Designers often can’t use their tools
of choice, and there is a difference between the mockups they would normally
deliver and templates containing logic.

These problems aren’t always urgent, and, for some projects, mixing logic in tem-
plates may work fine. But we feel it’s beneficial to the users of Wicket to make a clear
choice and stick to it for the sake of consistency and simplicity. So, with Wicket, you
use just Java for implementing the dynamic behavior and just HTML for specifying
the layout.

 To round out our initial exploration of Wicket’s programming model, here is an
explanation about how Wicket provides meaningful abstractions and encourages you
to come up with your own.

1.2.3 The right abstractions

Wicket lets you write UIs that run in web browsers. As such, it has abstractions for all
the widgets you can see in a typical web page, like links, drop-down lists, text fields,
and buttons. The framework also provides abstractions that aren’t directly visible but

14 CHAPTER 1 What is Wicket?
that makes sense in the context of web applications: applications, sessions, pages, vali-
dators, converters, and so on. Having these abstractions will help you find your way
around Wicket smoothly and will encourage you to put together your application in a
similar intuitive and elegant way.

 Writing custom components is an excellent way to provide meaningful abstractions
for your domain. SearchProductPanel, UserSelector, and CustomerNameLabel could
be abstractions that work for your projects and such objects can have methods such as
setNumberOfRows and setSortOrder, and factory methods like newSearchBar. Remem-
ber that one of the benefits of object orientation is that it lets you create abstractions
from real-world objects and model them with data and behavior.

 This concludes the first part of the chapter. You’ve learned that Wicket aims to
bridge the gap between object-oriented programming and the fact that the web is
built on a stateless protocol (HTTP). Wicket manages state transparently so you can
utilize regular Java programming for implementing the logic in your pages and com-
ponents. For the layout, you use regular HTML templates that are void of logic; they
contain placeholders where the components hook in.

NOTE Wicket is specifically written for Java, which is an imperative program-
ming language in which mutable state is a core concept. If it had been
written for a functional programming language (where immutability is a
core assumption), Wicket would have looked entirely different.

That was Wicket at a high level. In the second half of this chapter, we’ll look at coding
with Wicket.

1.3 Have a quick bite of Wicket
There’s nothing like seeing code when you want to get an idea about a framework. We
won’t get into much detail in this chapter, because we’ll have ample opportunity to do
that later. If the code is unclear here, don’t worry. We’ll discuss everything in more
depth in the rest of the book.

 In the examples in this section, and throughout this book, you’ll encounter Java
features you may not be familiar with: for instance, you’ll see a lot of anonymous sub-
classing. It’s a way to quickly extend a class and provide it with your specific behavior.
We’ll use this idiom frequently, because it makes the examples more concise.

 We also use one particular Java 5 annotation a lot: @Override. This annotation
exists to help you and the Java compiler: it gives the compiler a signal that you intend
to override that specific method. If there is no such overridable method in the super-
class hierarchy, the compiler generates an error. This is much more preferable than
having to figure out why your program doesn’t call your method (depending on the
amount of coffee you have available, this could take hours).

 We need a starting point for showing off Wicket, and the obligatory Hello World!
example seems like a good way to begin—how can there be a book on programming
without it?

15Have a quick bite of Wicket
1.3.1 Hello, uhm … World!

The first example introduces you to the foundations of every Wicket application:
HTML markup and Java classes. In this example, we’ll display the famous text “Hello,
World!” in a browser and have the text delivered to us by Wicket. Figure 1.7 shows a
browser window displaying the message.

 In a Wicket application, each page consists of an HTML markup file and an associ-
ated Java class. Both files should reside in the same package folder (how you can cus-
tomize this is explained in chapter 9):

src/wicket/in/action/chapter01/HelloWorld.java
src/wicket/in/action/chapter01/HelloWorld.html

Creating a HelloWorld page in static HTML would look like the following markup file:

<html>
<body>
<h1>[text goes here]</h1>
</body>
</html>

If you look closely at the markup, the part that we want to make dynamic is enclosed
between the open and closing h1 tags. But first things first. We need to create a class
for the page: the HelloWorld class (in HelloWorld.java):

package wicket.in.action.chapter01;

import org.apache.wicket.markup.html.WebPage;

public class HelloWorld extends WebPage {
 public HelloWorld() {
 }
}

This is the most basic web page you can build using Wicket: only markup, with no
components on the page. When you’re building web applications, this is usually a
good starting point.

Imports and package names
This example shows imports and package names. These typically aren’t an interest-
ing read in programming books, so we’ll omit them in future examples. Use your IDE’s
auto-import features to get the desired import for your Wicket class.

If you use the PDF version of this book and want to copy-paste the example code, you
can use the “organize import” facilities of your IDE to fix the imports in one go.

Hello, World!
Figure 1.7

The Hello World! example as
rendered in a browser window

Dynamic
part

16 CHAPTER 1 What is Wicket?
How should we proceed with making the text between the h1 tags change from within
the Java program? To achieve this goal, we’ll add a label component (org.apache.
wicket.markup.html.basic.Label) to the page to display the dynamic text. This is
done in the constructor of the HelloWorld page:

In the constructor, we create a new Label instance and give it two parameters: the
component identifier and the text to display (the model data). The component identi-
fier needs to be identical to the identifier in the markup file, in this case message. The
text we provide as the model for the component will replace any text enclosed within
the tags in the markup. To learn more about the Label component, see chapter 5.

 When we add a child component to the Java class, we supply the component with
an identifier. In the markup file, we need to identify the markup tag where we want to
bind the component. In this case, we need to tell Wicket to use the h1 tag and have
the contents replaced:

The component identifiers in the HTML and the Java file need to be identical (case
sensitive). (The rules regarding component identifiers are explained in the next
chapter.) Figure 1.8 shows how the two parts line up.

 If we created a Wicket application and directed our browser to the server running the
application, Wicket would render the following markup and send it to the web client:

<html>
<body>
<h1 wicket:id="message">Hello, World!</h1>
</body>
</html>

Make sure you pick the Wicket components, because an overlap exists between the
component names available from Swing and AWT. For example, java.awt.Label
wouldn’t work in a Wicket page.

public class HelloWorld extends WebPage {

 public HelloWorld() {

 add(new Label("message", "Hello, World!"));

 }

}
er model

<html>

<body>

 <h1 wicket:id="message">[text goes here]</h1>

</body>

</html> identifier

gets replaced

17Have a quick bite of Wicket
This example provides the label with a static string, but we could retrieve the text from
a database or a resource bundle, allowing for a localized greeting: “Hallo, Wereld!”
“Bonjour, Monde!” or “Gutentag, Welt!” More information on localizing your applica-
tions is available in chapter 12.

 Let’s say goodbye to the Hello World! example and look at something more
dynamic: links.

1.3.2 Having fun with links
One of the most basic forms of user input in web applications is the act of clicking a
link. Most links take you to another page or another website. Some show the details
page of an item in a list; others may even delete the record they belong to. This exam-
ple uses a link to increment a counter and uses a label to display the number of clicks.
Figure 1.9 shows the result in a browser window.

If we were to handcraft the markup for this page, it would look something like this:

public class HelloWorld extends WebPage {
 public HelloWorld() {

 }
}

add(new Label("message", "Hello, Wicket!"));

<html>

<body>

</body>

</html>

<h1 wicket:id="message">Hello, World!</h1>

component identified by wicket:id

Figure 1.8 Lining up the component in the markup file and Java class

Link example

This link has been clicked 0 times.

Figure 1.9 The link example shows a link that increases the value of a counter
with each click.

<html>

<body>

<h1>Link example</h1>

This link has been clicked 123 times.

</body>

</html> Link component Label component

18 CHAPTER 1 What is Wicket?
As you can see, there are two places where we need to add dynamic behavior to this
page: the link and the number. This markup can serve us well. Let’s make this file a
Wicket markup file by adding the component identifiers:

<html>
<body>
This link has been clicked
123 times.
</body>
</html>

In this markup file (LinkCounter.html), we add a Wicket identifier (link) to the link
and surround the number with a span, using the Wicket identifier label. This enables
us to replace the contents of the span with the actual value of the counter at runtime.
Now that we have the markup prepared, we can focus on the Java class for this page.
CREATING THE LINKCOUNTER PAGE

We need a place to store our counter value, which is incremented every time the link
is clicked; and we need a label to display the value of the counter. Let’s see how this
looks in the next example:

public class LinkCounter extends WebPage {
 private int counter = 0;

 public LinkCounter() {
 add(new Link("link") {
 @Override
 public void onClick() {
 counter++;
 }
 });
 add(new Label("label",
 new PropertyModel(this, "counter"));
 }
}

First, we add a property to the page so we can count the number of clicks b. Next, we
add the Link component to the page c. We can’t simply instantiate this particular
Link component, because the Link class is abstract and requires us to implement the
behavior for clicking the link in the method onClick. Using an anonymous subclass of
the Link class, we provide the link with the desired behavior: we increase the value of the
counter in the onClick method.

 Finally, we add the label showing the value of the counter d. Instead of querying
the value of the counter ourselves, converting it to a String, and setting the value
on the label, we provide the label with a PropertyModel. We’ll explain how property
models work in more detail in chapter 4, where we discuss models. For now, it’s suffi-
cient to say that this enables the Label component to read the counter value (using
the expression "counter") from the page (the this parameter) every time the page is
refreshed. If you run the LinkCounter and click the link, you should see the counter’s
value increase with each click.

Link
component

Label
component

Count clicksb

Add link
to page

c

Show counter
value

d

19Have a quick bite of Wicket
 Although this example might have been sufficient for a book written in 2004, no
book on web applications today is complete without Ajax.
PUTTING AJAX INTO THE MIX
If you haven’t heard of Ajax yet—and we don’t mean the Dutch soccer club or the
housecleaning agent—then it’s best to think of it as the technology that lets websites
such as Google Maps, Google Mail, and Microsoft Live provide a rich user experience.
This user experience is typically achieved by updating only part of a page instead of
reloading the whole document in the browser. In chapter 10, we’ll discuss Ajax in
much greater detail. For now, let’s make the example link update only the label and
not the whole page.

 With this new Ajax technology, we can update only part of a page as opposed to
having to reload the whole page on each request. To implement this Ajax behavior, we
have to add an extra identifier to our markup. We also need to enhance the link so it
knows how to answer these special Ajax requests.

 First, let’s look at the markup: when Wicket updates a component in the page
using Ajax, it tries to find the tags of the target component in the browser’s document
object model (DOM). The component’s HTML tags make up a DOM element. All DOM
elements have a markup identifier (the id attribute of HTML tags), and it’s used to
query the DOM to find the specific element.

 Note that the markup identifier (id) isn’t the same as the Wicket identifier
(wicket:id). Although they can have the same value (and often do), the Wicket iden-
tifier serves a different purpose and has different constraints for allowed values. You
can read more about these subjects in chapters 2, 3, and 10. For now, just follow along.
Remember the LinkCounter.html markup file? There is no need to make any extra
changes to it; as you’ll see, all the Ajax magic is driven through plain Java code. Here it
is again, unmodified:

<html>
<body>
This link has been clicked
123 times.
</body>
</html>

Let’s now look at the Java side of the matter. The non-Ajax example used a normal
link, answering to normal, non-Ajax requests. When the link is clicked, it updates the
whole page. In the Ajax example, we’ll ensure that this link behaves in both Web 1.0
and Web 2.0 surroundings by utilizing the AjaxFallbackLink.

 AjaxFallbackLink is a Wicket component that works in browsers with and without
JavaScript support. When JavaScript is available, the AjaxFallbackLink uses Ajax to
update the specified components on the page. If JavaScript is unavailable, it uses an
ordinary web request just like a normal link, updating the whole page.

 This fallback behavior is handy if you have to comply with government regulations
regarding accessibility (for example, section 508 of the Rehabilitation Act, U.S. fed-
eral law).

20 CHAPTER 1 What is Wicket?
Let’s see how this looks in the next snippet:

public class LinkCounter extends WebPage {
 private int counter;
 private Label label;

 public LinkCounter() {
 add(new AjaxFallbackLink("link") {
 @Override
 public void onClick(AjaxRequestTarget target) {
 counter++;
 if(target != null) {
 target.addComponent(label);
 }
 }
 });
 label = new Label("label", new PropertyModel(this, "counter"));
 label.setOutputMarkupId(true);
 add(label);
 }
}

In this class, we add a reference to the label in our page b as a private variable, so we
can reference it when we need to update the label in our Ajax request. We change the
link to an AjaxFallbackLink c and add a new parameter to the onClick implemen-
tation: an AjaxRequestTarget d. This target requires some explanation: it’s used to
identify the components that need to be updated in the Ajax request. It’s specifically
used for Ajax requests. You can add components and optionally some JavaScript to it,
which will be executed on the client. In this case, we add the Label component to the

Accessibility (also known as section 508)
In 1973, the U.S. government instituted the Rehabilitation Act. Section 508 of this
law requires federal agencies to make their electronic and information systems us-
able by people with disabilities in a way that is comparable for use by individuals who
don’t have disabilities. Since then, many companies that have external websites
have also adopted this policy.

For example, the HTML standard provides several useful tools to improve usability for
people who depend on screen readers. Each markup tag supports the title and
lang attributes. The title can be read aloud by a screen reader. For instance, an im-
age of a kitten could have the title “Photo of a kitten.” Creating standards-compliant
markup helps a lot in achieving compliance with section 508.

Although in recent years support for client-side technologies such as JavaScript has
improved in screen readers, many government agencies disallow the use of Java-
Script, limiting the possibilities to create rich internet applications. Wicket’s fallback
Ajax components provide the means to cater to users with and without JavaScript us-
ing a single code base.

Add referenceb

Change classc

New
parameterd

Generate id
attributee

21Have a quick bite of Wicket
target, which means Wicket will take care of updating it within the browser every time
an Ajax request occurs.

 Because the link is an AjaxFallbackLink, it also responds to non-Ajax requests.
When a normal request comes in (that is, when JavaScript isn’t available or has been
disabled in the browser), the AjaxRequestTarget is null. We have to check for that
condition when we try to update the Label component.

 Finally, we have to tell Wicket to generate a markup identifier for the label e. To
be able to update the markup DOM in the browser, the label needs to have a markup
identifier. This is the id attribute of a HTML tag, as in this simple example:

During Ajax processing, Wicket generates the new markup for the label and replaces
only part of the HTML document, using the markup identifier (id attribute) to locate
the specific markup in the page to replace.

 As you can see, we don’t have to create a single line of JavaScript. All it takes is add-
ing a markup identifier to the label component and making the link Ajax aware. To
learn more about creating rich internet applications, refer to chapter 10. If you want
to learn more about links and linking between pages, please read chapter 5.

NOTE With Wicket, you get the benefits of Ajax even when you’re using
just Java and just HTML. When you use other frameworks, you may
need to do a lot more—for example, if you’re using Spring MVC
along with an Ajax JavaScript library such as Prototype or Dojo, you
may have to use a mixture of HTML, JSP, JSP EL, tag libraries such as
JSTL, some JavaScript, and then Java (MVC) code to achieve what you
want. Obviously, the more layers and disparate technologies your
stack contains, the more difficult it will be to debug and maintain
your application.

In this example, we performed an action in response to a user clicking a link. Of
course, this isn’t the only way to interact with your users. Using a form and input fields
is another way.

1.3.3 The Wicket echo application

Another fun example is a page with a simple form for collecting a line from a user,
and a label that displays the last input submitted. Figure 1.10 shows a screenshot of a
possible implementation.

Figure 1.10

This example echoes
the text in the input
field on the page.

22 CHAPTER 1 What is Wicket?
If we just focus on the markup, it looks something like the following:

<html>
<head><title>Echo Application</title></head>
<body>
 <h1>Echo example</h1>
 <form>
 <input type="text" />
 <input type="submit" value="Set text" />
 </form>
 <p>Fun Fun Fun</p>
</body>
</html>

The input for the echo application is submitted using a form b. The form contains a
text field where we type in the message, and a submit button. The echoed message is
shown below the form c. The following markup file shows the result of assigning
Wicket identifiers to the components in the markup:

<html>
<head><title>Echo Application</title></head>
<body>
 <h1>Echo example</h1>
 <form wicket:id="form">
 <input wicket:id="field" type="text" />
 <input wicket:id="button" type="submit" value="Set text" />
 </form>
 <p wicket:id="message">Fun Fun Fun</p>
</body>
</html>

We add Wicket component identifiers to all markup tags identified in the previous
example: the form, the text field, the button, and the message. Now we have to create
a corresponding Java class that echoes the message sent using the form in the message
container. Look at the next class:

public class EchoPage extends WebPage {
 private Label label;
 private TextField field;

 public EchoPage() {
 Form form = new Form("form");
 field = new TextField("field", new Model(""));
 form.add(field);
 form.add(new Button("button") {
 @Override
 public void onSubmit() {
 String value = (String)field.getModelObject();
 label.setModelObject(value);
 field.setModelObject("");
 }
 };
 add(form);
 add(label = new Label("message", new Model("")));
 }
}

Input
form

b

Messagec

For later
reference

b

Add field
to form

c

Add
button
to form

d

23Summary
The EchoPage keeps references b to two components: the label and the field. We’ll use
these references to modify the components’ model values when the form is submitted.

 We introduce three new components for this page: Form, TextField, and Button.
The Form component c is necessary for listening to submit events: it parses the
incoming request and populates the fields that are part of the form. We’ll discuss
forms and how submitting them works in much greater detail in chapter 6.

 The TextField d is used to receive the user’s input. In this case, we add a new
model with an empty string to store the input. This sets the contents of the text field
to be empty, so it’s rendered as an empty field.

 The Button component is used to submit the form. The button requires us to cre-
ate a subclass and implement the onSubmit event. In the onSubmit handler, we
retrieve the value of the field and set it on the label. Finally, we clear the contents of
the text field so it’s ready for new input when the form is shown to the user again.

 This example shows how a component framework works. Using Wicket gives you
just HTML and Java. The way we developed this page is similar to how many of
Wicket’s core contributors work in their day jobs: create markup, identify compo-
nents, assign Wicket identifiers, and write Java code.

1.4 Summary
You’ve read in this chapter that Apache Wicket is a Java software framework that aims
to bridge the gap between object-oriented programming and the fact that the web is
built on HTTP, which is a stateless protocol. Wicket provides a stateful programming
model based on just Java and just HTML. After sharing the story of how we found
Wicket and introducing the motivations behind the programming model, we showed
examples of what coding with Apache Wicket looks like.

 We hope you’ve liked our story so far! The next chapter will provide a high-level
view of the most important concepts of Wicket. Feel free to skip that chapter for now
if you’re more interested in getting straight to writing code.

The architecture of Wicket
Wicket is easy to use, once you grasp the core concepts, and you can be productive
without needing to know the inner details of the framework. After you read this
chapter, you’ll know where to turn if you run into problems or when you need to
customize the framework. Also, by lifting the veil on the magical Wicket box, we
hope to make you eager to start using the framework.

 First, we’ll introduce the subject of many of the examples you’ll encounter
throughout this book. When I (Eelco) lived in Deventer, The Netherlands, I fre-
quented a fantastic cheese store. Like many Dutch, I’m crazy about cheese, and this
award-winning store sells an amazing selection. Now that I live in the United States,
more specifically Seattle, Washington, (where I moved about the same time we
started writing this book), I miss a good and affordable selection of Dutch cheeses.
Seattle provides more than enough options to make up for this (like the city’s
impressive selection of sushi bars and Thai restaurants), but every once in a while I
crave a piece of well-ripened Dutch farmer’s cheese.

 Yes, it’s available but you pay sky-high prices and the selection isn’t great. I tried
my luck on the internet, but the Deventer store doesn’t sell online; and although I

In this chapter:
■ Learning how Wicket works
■ Understanding Wicket’s fundamental concepts
24

25How Wicket handles requests
came across some stores that cater to Dutch immigrants and sell Dutch cheese, their
selection and pricing weren’t to my liking.

 Just when I was making peace with the idea of a drastic cut in cheese intake, I remem-
bered I’m a programmer! I could build my own online store! If only I had a bit more
time…(maybe it’s something to pick up after I’m done writing this book). Until then,
to keep the idea fresh, it serves as a good subject for a recurring example in this book.

 Skip this chapter if you prefer to start coding immediately, rather than reading
about the bigger picture. You can always return to the chapter.

 We’ll look at Wicket’s architecture from several angles in this chapter. We’ll begin
by discussing how requests are processed—what objects Wicket uses and what steps it
executes during processing. After that, we’ll get to the meat of what Wicket is all about
for end users: components, markup, models, and behaviors.

 Let’s start by examining request processing.

2.1 How Wicket handles requests
In this section, we’ll look at how requests are processed. First we’ll examine what
objects play a role in request processing, then we’ll discuss the steps Wicket executes
during the handling of a request.

2.1.1 Request-handling objects

When you think about the concepts that play a role in an online cheese store—or any
web application, for that matter—three immediately come to mind: application, session,
and request. The cheese store, which is an application, handles requests from users, who
want to do things like browsing through the catalog and placing orders. These requests
in turn are part of a session (or conversation): a user browses a catalog, puts items in a
shopping basket, and ends the conversation by placing the order for those items.

 Figure 2.1 shows that Mary and John are using the cheese-store application. John
did a search for leerdammer, browsed the goat cheeses section, and placed an order.

RequestSessionApplication

Mary

John

search 'leerdammer'

place order

cheese store

browse 'goat cheeses'

Figure 2.1 One application handles multiple sessions, each of which handles multiple requests over
its lifetime.

26 CHAPTER 2 The architecture of Wicket
When you follow an object-oriented design approach, you typically translate concepts
to classes. In Wicket, the Application, Session, and Request classes—or rather, their
object instances—play a central role in request processing. Figure 2.2 shows these
classes together with others that are directly related.

 Let’s take a closer look at each class.
APPLICATION

Conceptually, the Application object is the top-level container that bundles all com-
ponents, markup and properties files, and configuration. It’s typically named after the
main function it performs, which in our example is a cheese store. (We call it Cheesr-
Application in our examples, but we could have named it CheeseStoreApplication
or something similar.)

 Each web application has exactly one Application instance. Practically, the Appli-
cation object is used for configuring how Wicket behaves in the service of your appli-
cation, and it’s the main entry point for plugging in customizations. The Application
object provides a couple of factory methods to enable you to provide custom sessions
and request cycles, and so on. Most of the application-wide parameters are grouped in
settings objects—for instance, parameters that tell Wicket whether templates should
be monitored for changes or whether to strip wicket:id attributes from the rendered
HTML. If you use a framework like Spring to manage your service layer or data access
objects (DAOs), you can set up integration with Wicket in the Application object.
SESSION

A session holds the state of one user during the time the user is active on the site. There
is typically one session instance for one user. Sessions either are explicitly terminated
(when a user logs off) or timed out when no activity has occurred for a certain time.

RequestResponse

RequestCycleProcessor

Application

Session

SessionStore

RequestTarget

RequestCycle

Figure 2.2 Important classes for handling requests. The Application class is responsible for the
instantiation of most objects.

27How Wicket handles requests
 A nice feature of Wicket is the ability to use custom sessions—for instance, to keep
track of the current user. Listing 2.1 shows a custom session that does this.

public class WiaSession extends WebSession {

 public static WiaSession get() {
 return (WiaSession) Session.get();
 }

 private User user;

 public WiaSession(Request request) {
 super(request);
 setLocale(Locale.ENGLISH);
 }

 public synchronized User getUser() {
 return user;
 }

 public synchronized boolean isAuthenticated() {
 return (user != null);
 }

 public synchronized void setUser(User user) {
 this.user = user;
 dirty();
 }
}

Unlike the key-value maps people typically employ when they use the Servlet API’s
HttpSession object, this code takes advantage of static typing. It’s immediately clear
what information can be stored in the session at any given time.

 Note in this example, the methods are synchronized, because sessions aren’t
thread-safe (more on that later this chapter). setUser calls dirty so that any cluster-
ing is properly performed, and the static get method uses Java’s covariance feature
so users can get the current session instance without casting (you can do WiaSession
s = WiaSession.get() instead of WiaSession s = (WiaSession)WiaSession.get()).
When using Wicket, you typically never need to deal with the raw HttpServlet-
Request or Response objects; this holds true even when you’re dealing with cus-
tom sessions.
SESSIONSTORE

The session store is responsible for where, when, and how long session data is kept. A
typical implementation stores the current page in the HttpSession object (from the
javax.servlet API) and stores older pages to a temporary store (by default a tempo-
rary directory) for Back button support. Each application has one store.

 In addition to the user Session objects, the session store is also responsible for
keeping track of the browsing history of clients in the application. Keeping track of
this history supports calls to the current page and also supports the Back button.

Listing 2.1 Custom session that holds a reference to a user

28 CHAPTER 2 The architecture of Wicket
As figure 2.3 shows, the request history is stored as pages in page maps, which in turn
are linked to sessions.

 Page instances are grouped in page maps. Typically, a single page map per session
is sufficient to store the history of pages the user has accessed. But you may need mul-
tiple page maps to support the use of multiple browser windows (including popups
and browser tabs) for the same logged-in user.
REQUEST

A Request object encapsulates the notion of a user request and contains things like the
request’s URL and the request parameters. A unique instance is used for every request.
RESPONSE

Responses encapsulate the write operations needed to generate answers for client
requests, such as setting the content type and length, encoding, and writing to the
output stream. A unique instance is used for every request.
REQUESTCYCLE

The request cycle is in charge of processing a request, for which it uses the Request and
Response instances. Its primary responsibilities are delegating the appropriate steps in
the processing to the RequestCycleProcessor and keeping a reference to the Request-
Target that is to be executed. Each request is handled by a unique request cycle.

 When you get to be a more advanced Wicket user, you’ll probably use the request
cycle a lot. It provides functionality for generating Wicket URLs, and it can expose
some of the bare metal—like the HttpServletRequest—if you need that.
REQUESTCYCLEPROCESSOR

RequestCycleProcessor is a delegate class that implements the steps that make up
the processing of a request. In particular, it implements how a request target is deter-
mined, how events are passed through the appropriate event handlers, and how the
response is delegated. An instance is shared by all requests.

pageMaps
Session 1

entries
PageMap: window2

entries
PageMap: window1

Page 1 v 1

Page 1 v 2

Page 2 v 1
sessions

SessionStore

pageMaps
Session 2

Figure 2.3 The conceptual relationship between session stores, sessions, page maps, and pages

29How Wicket handles requests
REQUESTTARGET

A request target encapsulates the kind of processing Wicket should execute. For
instance, a request can be to a bookmarkable page (a public accessible page that is
constructed when the request is executed), or the target can be a page that was previ-
ously rendered. It can be to a shared resource, or it may represent an AjaxRequest.
The request target ultimately decides how a response is created. Multiple request tar-
gets may be created in a request; but in the end, only one is used to handle the
response to the client.

 Listing 2.2 shows a simple implementation of a request target.

public class RedirectRequestTarget implements IRequestTarget {

 private final String redirectUrl;

 public RedirectRequestTarget(String redirectUrl) {
 this.redirectUrl = redirectUrl;
 }

 public void detach(RequestCycle requestCycle) {
 }

 public void respond(RequestCycle requestCycle) {
 Response response = requestCycle.getResponse();
 response.reset();
 response.redirect(redirectUrl);
 }
}

When Wicket handles the request target, it calls the respond method, which in turn
issues a redirect. Behind the scenes, the Wicket Response object delegates to the Serv-
let API to perform the redirect.

 In this section, we looked at what objects play a role in request processing. You saw
that the Application object holds settings and acts like an object factory. The session
represents a user and helps you relate multiple requests. The request cycle is in
charge of processing separate requests. In the next section, we’ll look at the steps
Wicket follows during processing.

2.1.2 The processing steps involved in request handling

When Wicket determines that it should handle a request, it delegates the processing
to a request-cycle object. The processing is done in four consecutive steps, shown in
figure 2.4.

 Wicket’s URL handling is flexible, and sometimes the same kind of request can be
encoded in multiple ways. For instance, depending on your settings, the URL frag-
ments foo=bar, foo/bar, and x773s=09is7 can mean the same thing. In the first step of
the request handling, Wicket decodes (unpacks the values encoded in) the URL of the
request so that no matter what the URL looks like, it’s interpreted just one way. The
decoding result is stored in a RequestParameters object.

Listing 2.2 Simple request target that redirects to the provided URL

30 CHAPTER 2 The architecture of Wicket
If you look at the decoded values in the RequestParameters object in figure 2.4, you
can guess what this request will do. The component path 2:actionLink refers to the
component with path actionLink, found on the page that Wicket knows by identifier 2.
Wicket assigns version numbers when structural changes occur to page instances (for
instance, when you replace, hide, or unhide components). In this case, the page ver-
sion derived after decoding the URL is 0, which means we’re after the first (unchanged)
instance of the page.

 In the next step, Wicket determines the request target. Wicket can handle many
different kinds of requests—for instance, to bookmarkable pages, shared resources,
and Ajax requests. In figure 2.4, the request target is an instance of class Listener-
InterfaceRequestTarget, and it encapsulates the call to a link (ILinkListener inter-
face) on a previously rendered page. In this case, the previously rendered page is
retrieved using identifier 2 and version 0, as you’ve already seen.

 The third step, event processing, is optional. It’s used for things like calling links or
Ajax behaviors, but not for processing requests for bookmarkable pages or shared
resources. During event processing, the request target may change. For example, this
happens when you call setResponsePage in a form’s onSubmit method, in which case
a PageRequestTarget instance is used for the remainder of the request processing.
Calling setResponsePage is how you can easily navigate from one page to another
when handling events such as onClick or onSubmit.

 The final step is responding to the client. As mentioned earlier, the processing of
this step is delegated to the request target, because that target has the best knowledge
of how the response should be created.

decode request

determine request target

process events

respond

URL: /?wicket:interface=:2:actionLink::ILinkListener::

componentPath = "2:actionLink"
versionNumber = 0
interfaceName = ILinkListener

parameters: RequestParameters

component = Home$1
listener = linkListener
page = Home

target: ListenerInterfaceRequestTarget

onClick()

request

call listener

render page

Figure 2.4 Request processing is performed in four steps: decode request, determine request target,
process events, and respond.

31Introducing Wicket components
NOTE When runtime exceptions occur, a special variant of the response step is
executed.

A page-request target takes care of rendering a page and sending it to the client, a
resource-request target locates a resource (an image, for instance) and streams it to
the client, and an Ajax request target renders individual components and generates
an XML response that the client Ajax library understands.

2.1.3 Thread-safety

Much in Wicket centers around providing a natural programming model. Having to
worry about thread-safety can be a pain, so Wicket tries to provide a single-threaded
programming model wherever possible.

 Pages and components are synchronized on the page map they’re in. Every page is
a member of only one page map; in effect pages can never be used by multiple
threads concurrently.

 You never have to worry about thread-safety as long as you keep two rules in mind:

■ Never share component object instances, models, and behaviors between pages
that are in several page maps. Although the chance that a user will trigger two
pages in different page maps at the same time is slight, it’s possible, especially
with pages that take a while to render.

■ Application objects, session objects, and session stores aren’t thread-safe.

So far in this chapter, we’ve looked at Wicket from the perspective of request process-
ing. It’s good to understand what goes on in the background, but you’re unlikely to
deal with this often. Starting in the next section, we’ll be more practical and look at
classes you will use on a daily basis. Components, models, markup, and behaviors are all
important concepts; take a break, drink some coffee, and get ready for components!

2.2 Introducing Wicket components
There are a million ways to build a house, but most people wouldn’t consider building
toilets, bathtubs, and glass windows from scratch. Why build a toilet yourself when you
can buy one for less money than it would cost you to construct it, and when it’s
unlikely you’ll produce a better one than you can get in a shop?

 In the same fashion, most software engineers try to reuse software modules. “Make
or buy” decisions encompass more than whether a module is available; generally, reus-
ing software modules is cheaper and leads to more robust systems. Reusing software
also means you don’t have to code the same functionality over and over again.

 Components, like objects, are reusable software modules. The distinction between
components and objects is blurry, and as yet there is no general consensus on how to
tell the two apart.

 A workable explanation is that in addition to data, components encapsulate pro-
cesses and can be thought of as end-user functionality; objects are primarily data-
oriented and typically finer grained than components. Components are like prefab

32 CHAPTER 2 The architecture of Wicket
modules that merely require configuration and assembly to start doing their job;
objects are building blocks that don’t do much by themselves. Along this line of
thought, examples of components are a weather forecast reporting service and a
credit-card validation module, and examples of objects are a user and bank account.

 One special class of components is specialized to function in UIs. Such components
are often called widgets; we’ll use the terms components and widgets interchangeably in this
book. Technically, Wicket is concerned with markup manipulation, but because that
markup is mostly used for rendering UIs, we can call Wicket a widget framework.

 Here are a few key observations about Wicket’s widgets/components:

■ They’re self-contained and don’t leak scope. When you want to use a certain compo-
nent, it’s enough to place it in a container (like a Page); other components
don’t have to know about it.

■ They’re reusable. If you develop a cheese browser once, and you need it in
another page or another application, you can use it there without having to
rewrite half of it.

■ You build them using plain Java. Java is an expressive language that is statically
typed and has excellent tool support (for things like refactoring and debug-
ging). You don’t have to learn another domain-specific language (DSL) to work
with Wicket.

■ You use them through plain Java programming. If the cheese browser component
has an option for setting the number of categories it displays on a page, you can
find that option by using your IDE or by looking up the Javadoc. When you use
that setting, and the API changes (for instance, if it’s deprecated), the compiler
and IDE will tell you.

When we zoom in on Wicket components, we can see that they consist of three parts
that closely work together. We’ll call this the component triad.

2.2.1 The component triad

Making up the component triad are the (Java) component, the model, and the
markup. Each has a distinct responsibility. For plain vanilla web pages, the markup
defines the static parts of the pages. The Java components fill in the dynamic parts
of that markup, and models are used by components to get the data for those
dynamic parts.

 In figure 2.5, you can see the following:

■ The markup (which formally is metadata that describes text, but in our
example is HTML) that contains the bulk of what is displayed to a user.
Wicket matches wicket:id attributes and attaches Java components to the
tags in which these attributes are defined. Here, the span tag contains a
wicket:id attribute.

■ Java components Page and Label. Pages are special top-level components that
we’ll talk about a bit later, and labels are components that replace their bodies

33Introducing Wicket components
with dynamic content. The label in figure 2.5 has message as its identifier,
which matches with the wicket:id attribute of the span tag in the markup.

■ The Label component, which uses a model that produces the string "Hello".
The label replaces the body of the HTML tag it’s attached to with the model
value, so the browser receives Hello! as part of the page.

As you saw in chapter 1, markup files in Wicket never contain real processing logic.
You’ll never find loops, conditionals, and the like in Wicket templates; they’re only
concerned with presentation. The UI logic, such as when to display a button and what
to do when it’s clicked, is encoded in the Java components. The Java components also
function as state holders—for instance, to remember what page of a pageable list
you’re on.

 Models are optional and are an indirection for how to get the data that drives
the Java components. Models hide what data to get and from where to get it, and Java
components hide when and how that data is displayed. We’ll look at models later in
this chapter.

 Next, we’ll look at Java components, markup, and models separately, starting with
the Java components.

2.2.2 Wicket’s Java components

Every Wicket Java component must extend from the Component base class some-
where down the line. The Component class encapsulates the minimal behavior and

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Cheese Store</title>
 <link rel="stylesheet" type="text/css" href="style.css" />
</head>
<body>

 Welcome!

...

</body>
</html>

Page

Label[id=message]

Model

modelObject
[value="Hello!"] markup.html

Component IModel

Cheese Store

Hello!

Figure 2.5 The component triad: Java components, models, and markup

34 CHAPTER 2 The architecture of Wicket
characteristics of Wicket widgets, such as how they’re rendered, how models are man-
aged, how authorization is enforced, and whether a component should be displayed for
a given context. Figure 2.6 shows the hierarchy of a few commonly used components.

 There are many kinds of components, ranging from generic to specific. Most non-
abstract components are specialized for a certain task; for example, TextFields
receive and display textual user input, and Labels replace their tag bodies.

 We’ll get into the details of many specific components later. At this point, we’ll
examine one special component: Page.

2.2.3 Page: one component to rule them all

Pages are special components that function as the root for your component trees.
When you’re using Ajax or a testing framework, individual components can be ren-
dered independently; but as a rule, components are ultimately embedded in a tree
structure with a Page as the root in order for users to see them.

 Think of a Page as the equivalent of a browser window. Common names for the
same concept in other widget frameworks are Window, Frame, and ViewRoot.

render()
getMarkupAttributes()
isActionAuthorized(Action)

id
visible
behaviors
metadata
...

Component

WebComponent

Label

WebMarkupContainer

children
...

MarkupContainer

onSubmit()

formComponents
...

Form

getInput()

formComponents
...

FormComponent

TextField

Figure 2.6 A sample of Wicket’s component hierarchy

35Introducing Wicket components
Figure 2.7 shows a component tree
with a page that has a panel and a
form as its direct children. The panel
nests a label and a link; the form nests
a text field and a button. A page and
its nested components render recur-
sively. When Wicket asks the page to
render itself, the page asks its chil-
dren to render, and they in turn ask
any children to render.

 Component paths reflect the com-
ponents’ position in the component
tree. Examples of component paths
based on the tree in figure 2.7 are
user:userName and searchForm:find,
where the colon (:) functions as a sep-
arator between path elements.

 The page isn’t part of the path,
because only one is rendered at any
given time (you can’t nest pages); that one is also always the root. That’s why pages
don’t need to have a wicket:id like other components.

 If you look again at the example from section 2.1.2, a request to the link in figure 2.7
could look like this

/?wicket:interface=:1:user:toProfile::ILinkListener::

where 1 is the page’s identifier.
 Pages have special responsibilities that are related to rendering and the way page

maps are managed. They hold versioning information, and they have special abilities
that make serializing the component trees as efficient as possible.

 Pages also have associated markup files. A page’s associated markup file functions
as the starting point where that tree’s markup is read. Markup is parsed into a tree
structure in Wicket: you’ve probably guessed how Wicket matches the Java component
tree and the associated markup tree, taking into account the hierarchy of parents/
children and the way Wicket identifiers are used to match siblings. In the next section,
we’ll look at how components and their associated markup work together.

2.2.4 Components and markup

In chapter 1, we introduced Wicket as a framework that bridges the impedance mis-
match between the stateless nature of the web and Java code on the server-side.
Wicket makes this possible by what we like to call component-oriented programmatic
manipulation of markup. Components may do things like adding, removing, and
changing HTML tag attributes, replacing the body of their associated tags, and in
some cases generating more components and markup on the fly.

WelcomePage

UserPanel("user")

Label("userName")

Form("searchForm")

Link("toProfile")

TextField("searchArg")

Button("find")

Figure 2.7 A page with nested components

36 CHAPTER 2 The architecture of Wicket
 To illustrate how components and markup fit together, let’s look at another Hello
World! example. Listing 2.3 shows the Java part of the page.

public class Hello extends WebPage {
 public Hello() {
 add(new Label("message", "Hello Earth"));
 }
}

Listing 2.4 shows the page’s markup.

<html>
 <head>
 <title>
 Some example page
 </title>
 </head>
 <body>

 [message here]

 </body>
</html>

The Hello class, as defined in Hello.java, is the Wicket Page component. The
Hello.html file holds the markup for the Hello page. As you’ve seen before, Wicket
automatically matches the Java page instance and the markup file if they have the
same name (minus the extension) and reside in the same Java package. The Hello
page instance has Hello.html as its associated markup.

 The Label component doesn’t have its own associated markup file. Only a few
component classes—mainly pages, panels, and borders—work with associated markup
files. Components that aren’t associated with markup files are assigned a markup frag-
ment of one of their parents. Wicket locates the markup fragment by matching the
hierarchy of the Java component tree with the markup tree. Here, the label’s associ-
ated markup is the fragment that has the wicket:id attribute with the value
"message". That attribute is part of the markup as defined in Hello.html, which as we
saw is the markup file associated with the Hello page—the label’s direct parent.

 In listing 2.5, a label is added to a link, which in turn is added to a page.

public class HelloSun extends WebPage {

 public HelloSun() {
 String url = "http://java.sun.com";
 ExternalLink link = new ExternalLink("link", url);
 add(link);

Listing 2.3 Java code for the Hello web page (Hello.java)

Listing 2.4 HTML code for the Hello web page (Hello.html)

Listing 2.5 HelloSun Java code

37Introducing Wicket components
 link.add(new Label("label",
 "goto the java web site"));
 }
}

Listing 2.6 shows the markup for the page.

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Another example page
 </title>
 </head>
 <body>

 [link label here]

 </body>
</html>

The HelloSun page is linked to the HelloSun.html markup file, the external link
encompasses the <a> tag and the tags nested in that, and the label is attached to the
span tag. To illustrate further how the matching works, look at listing 2.7: the nesting
doesn’t match.

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Another example page
 </title>
 </head>
 <body>

 [link label here]

 </body>
</html>

Wicket would complain loudly about this page. The component tree doesn’t match
the wicket:id markings in the markup tree. In the Java code, the label is nested in
the link; but in the markup, it isn’t. If you want Wicket to do its job, the hierarchies
have to match.

Listing 2.6 HelloSun HTML code

Listing 2.7 HelloSun HTML with incorrect nesting

Match for
"link"

Match for
"label"

Link isn’t
parent

38 CHAPTER 2 The architecture of Wicket
2.2.5 Separation of presentation and logic: a good thing?

Being required to synchronize the component tree with your markup has a disadvan-
tage: you can’t shuffle tags around and expect everything to work. Most other frame-
works let you do this, which enables you to work quickly when you’re in prototype
mode. In such frameworks, you can get a lot done without writing any Java code,
which may speed up your development even more.

 But as is often the case, what is nice in the short term can be a pain in the long term.
The fact that you can code logic in your templates means that more often than not,
you’ll code logic in your templates. Or if you don’t, one of your colleagues will. Mixing
logic code with presentation code should be avoided, because it poses these problems:

■ UI logic is scattered over multiple locations, making it harder to determine how
an application will behave at runtime.

■ Any logic you put in your templates is plain text until it’s executed. You don’t
have any static typing. And without static typing, simple typos can go undetec-
ted until you run the code. Changes can then be easily overlooked when
you’re refactoring.

■ A problem that typically surfaces when projects become larger stems from the
fact that frameworks that support scripting typically support only a limited sub-
set of what you can do with a language like Java. Any DSL covers a subset of
general-purpose languages. JSPs, for instance, have many different tag libraries
with their own scope handling (meaning you can’t easily mix them) and their
own way of expressing things.

If you limit your templates to contain just the presentation code, which is something
that Wicket enforces, it’s a lot easier to keep your designs and prototypes synchro-
nized. The designs are focused on presentation, and so are Wicket’s templates. You
can hire web designers to mock up the pages and panels, for which they can use their
favorite HTML editors; you’ll never have to explain to them how JSP tags or Velocity
directives work. In the worst case, they may break the hierarchy, and you’ll have to fix
it. But they will never introduce bugs related to business logic (which can be hard to
track) because they’re completely isolated from all that.

 Let’s look at what we believe is good about Wicket’s insistence on separating pre-
sentation from logic.
EASY-TO-FIND LOGIC

Wicket’s strict separation of concerns means it’s always straightforward to find the
logic (in the Java code). And you have a good overview of what your pages and panels
will look like when they’re rendered—you can even preview them in your web browser
or HTML editor.
CONVENTION OVER CONFIGURATION

The way Wicket matches component trees and markup trees is an example of conven-
tion over configuration. You don’t need explicit configuration to get things accom-
plished; instead, you adhere to a few simple rules. The convention of the Java file

39Introducing Wicket components
having the same name as the associated markup file is a good example where Wicket
uses the well-known Don’t Repeat Yourself (DRY)principle.
COMPONENT NESTING

Component hierarchies are trees. It is easy to traverse the tree structure, navigating
from parent to child and vice versa and collecting whatever information you wish—
using, for example, the visitor pattern. You can even perform updates across a tree of
components in this manner and reuse this kind of code across pages. Models can rely
on the models of siblings, children, and parents of the components they’re attached to,
which can be a great help when you’re creating composite components. And the order
of processing (like rendering and model updating) is always predictable and natural.
PLAIN OLD JAVA OBJECTS

The acronym POJO, which stands for Plain Old Java Object, was for a while part of the
battle cry in the struggle against inflexible, heavyweight, XML-centric programming
models promoted by the industry as part of the first few releases of the Java Enterprise
Edition (JEE). Hibernate, Spring, and a few other frameworks (and their loyal bands
of passionate users) turned the tide, and now lightweight or agile approaches are
increasingly being favored.

 Lately, it’s starting to fall out of fashion to talk about POJO programming. It no
longer sounds fresh, and some argue that the fight is over and we should abandon
the acronym.

 But we believe the battle isn’t over, and Wicket is at the front for the web tier. Even
though JSF is probably an improvement over Struts (still regarded by many as the de
facto standard) and other Model 2 frameworks, the web tier of JEE still has remarkably
little to do with POJO. One of Wicket’s main goals is providing a POJO programming
model, and matching Java component and markup hierarchies is a key part of
Wicket’s strategy to achieve this.

 In this chapter so far, you’ve seen that Wicket components consist of three parts:
the Java class, the associated markup, and models. It’s time to discuss this last part of
the component triad.

2.2.6 The component’s data brokers: models
Models provide components with an interface to data. What components do with that
data is up to them. Labels use models to replace their tag bodies, list views to get the
rows to render, text fields to render their value attribute and write user input to, and
so forth.

 The concept of models comes from the Model View Controller (MVC) pattern,
first described by Steve Burbeck in the context of a user-interface framework of Small-
talk. Since then, it’s been applied in many variations. Although the implementation of
the pattern differs widely across those variations, the one thing they all have in com-
mon is that they talk about the MVC triad. There is much discussion about the pat-
tern’s degree of purity as it’s applied, but for the purpose of this book we’ll examine
how MVC is implemented in Wicket. Figure 2.8 is a diagram that shows how the tree
elements interact.

40 CHAPTER 2 The architecture of Wicket
This diagram shows that every element of the MVC triad has its own responsibility. The
elements represent different parts of a whole:

■ The model represents the domain model and the interaction with it. A domain
model includes objects like users, orders, cheeses, and spaceships. The domain
model contains the abstractions of the outside world for which the system is built.

■ The view renders UI elements. It takes care of how a component is displayed,
and it queries the model for any dynamic parts.

■ The controller receives user input. This can range from the value of a text field or
a check-box selection to the user clicking a link or a button. The controller uses
the user input to update the model, and it typically handles things like page
navigation and sending events to other components.

In desktop application frameworks, the controller is typically responsible for sending
messages to the view when it either detects model changes or receives input. But as in
web applications, the view is rendered on a user request rather than when the compo-
nent thinks it needs repainting; you don’t need to let the controller notify the view.
It’s enough to update any model data that is used by the view so that the next time a
component is rendered, the view will use the up-to-date data.

IModel

Component

Controller View

Model
Cheese.age

Cheese Store

Name Old Amsterdam

age 3 years

OK

Markup
<input type="text" ..

receives input renders

uses

updates consults

Figure 2.8

The Model View Controller
pattern as implemented
in Wicket

41Introducing Wicket components
Figure 2.8 shows a box labeled Component drawn around the controller and view
parts. This illustrates that those two elements are combined in one class in Wicket.
Much as in frameworks like Swing, components in Wicket are responsible for both
their rendering and the handling of input.

 The IModel model interface is fairly simple. It consists of two methods, getObject
and setObject—or three, if you count the detach method that IModel inherits from
the IDetachable interface. Figure 2.9 shows the IModel interface with some of its
related hierarchy.

 Components hold a reference to a model. It’s possible to let a component use
more than one model, but typically it uses one model or none (models are optional).

 The term model can be con-
fusing, because many people
understand the model to be the
data the component is inter-
ested in. But the concept of a
model in Wicket is more like an
indirection to the data than the
data itself. We could have called
models model proxies or model
locators. Models provide only a
means of locating the actual
Model object. Figure 2.10 illustrates.

 Figure 2.11 shows the same concepts drawn another way.
 In this example, the model holds a reference to the actual data you’re interested

in. How models locate their data is implementation specific. In this case, we used the

detach() : void
IDetachable

getObject() : Object
setObject(Object) : void

<interface>
IModelgetModel() : IModel

setModel(IModel model) : void
initModel: IModel

model: IModel
Component

propertyExpression() : String
target: Object

PropertyModel

Figure 2.9

The IModel interface

model

label

Cheese cheese = new Cheese("gouda");
IModel model = new Model(cheese);

Label label = new Label("label", model);

model

model

model

Figure 2.10 The model locates the model object (cheese).

model: IModel

label:
wicket.Component

value: Object

model:
wicket.model.Model

name: String

cheese:
foo.Cheese

Figure 2.11 The model contains the logic for looking up the data you’re interested in.

42 CHAPTER 2 The architecture of Wicket
simplest model that ships with Wicket: org.apache.wicket.model.Model, which
wraps the model value.

 When the label from this example renders, it calls getModelObject on itself, which
calls getObject on the model. This is illustrated in figure 2.12.

 This diagram is simplified—in reality, an extra processing step occurs for type con-
version when components render. But basically, this is what happens.

 We haven’t been entirely fair to one class in Wicket when we’ve talked about the
component triad. There is a conceptually simple utility for extending components
that is so powerful, it deserves a place in this chapter: behaviors.

2.2.7 Extending components with behaviors

The intuitive way to customize components—beyond instantiating and configuring
them, if that satisfies your use case—is to extend them using inheritance. This isn’t
always the most flexible approach, though—certainly not when you take into account
that Java is limited to single inheritance. Behaviors are a way around this inflexibility.
They provide the means to extend components using composition, which is more
flexible than extending them using inheritance.

 Typically, components are meant for one purpose. Labels render text. Text fields
handle text input. Repeaters repeat elements, and so forth. But in many cases, you
want to use a certain component but add functionality that isn’t related to its core
function. For instance, when you provide a link that lets the user remove an item from
a list, you may want to pop up a confirmation dialog. You could write a specialized link
for this purpose, but by using behaviors you can add such a dialog without writing a
special link class. As another example, wouldn’t it be nice to attach a date picker to a
text field without having to create a special class?

IRequestTarget label: Component model: IModel

getModelObject()

render()

getObject()

cheese Figure 2.12

Calls to get the model object
when rendering a component

43Introducing Wicket components
 Behaviors must be attached to components to do something useful, and each com-
ponent can have several behaviors attached. Some components use behaviors for their
internal workings, but you can also add behaviors to components from the outside by
calling Component’s add(IBehavior) method.

 Figure 2.13 shows the behav-
ior interface.

 All the methods in figure 2.13
except isTemporary share a com-
mon feature: they have a Component
argument. This way, behaviors can
be stateless (they don’t have to keep
the reference to the components
they’re attached to), and they can be
shared among components.

 Behaviors are mainly used for—
but aren’t limited to—these two cases:

■ Modifying attributes of HTML tags
■ Responding to events or calls to the components they’re bound to (their host

components)

For the first case, two classes are available: AttributeModifier and SimpleAttribute-
Modifier. An example is the quickest way to show what they do. Take this code

TextField myText = new TextField("myText", new Model("foo"));
myText.add(new SimpleAttributeModifier("class", "error");

with the following markup fragment:

<input type="text" wicket:id="myText" />

This is rendered as:

 <input type="text" wicket:id="myText" name="myText"
 class="error" value="foo" />

The class attribute is added to the tag the component is bound to. The text field first
handles its own tag, where it sets the name and value attributes to the appropriate val-
ues. Then, it iterates through the bound behaviors and executes them. The relevant
part of SimpleAttributeModifier is as follows:

@Override
public void onComponentTag(Component component, ComponentTag tag) {
 if (isEnabled(component)) {
 tag.getAttributes().put(attribute, value);
 }
}

This sets the attribute to the passed-in value when the bound component calls
onComponentTag. As you’d expect, attribute modifiers are commonly used to dynamically

beforeRender(Component) : void
afterRender(Component) : void
bind(Component) : void
detach(Component) : void
exception(Component, RuntimeException) : void
getStatelessHint() : boolean
isEnabled(Component) : boolean
onComponentTag(Component, ComponentTag) : void
isTemporary() : boolean

<interface>
IBehavior

Figure 2.13 The base interface for behaviors

44 CHAPTER 2 The architecture of Wicket
change the look and feel of rendered components by tweaking the HTML style attribute
or CSS class.

 Behaviors that want to receive calls through their host components must imple-
ment an extra interface (IBehaviorListener). Behaviors that do this can receive the
same kind of call that, for instance, links can receive, but they’re always passed
through their host components. Typically, such behaviors modify certain attributes,
such as onclick, to trigger the call to themselves. Behavior listeners are mainly used to
implement Ajax behaviors, which will be explained in chapter 10.

 You’ll have plenty of opportunities to see behaviors in action throughout this book.

2.3 Summary
This chapter provided an architectural overview of Wicket. We started by looking at
the classes that play a role in request processing and the steps Wicket executes when it
handles a request. You saw that the application object holds settings and function as
object factories, that sessions represent users and can connect multiple requests, and
that request cycles handle separate requests.

 After that, we discussed components. The component triad consists of the Java
component, associated markup, and the (optional) model. Components are nested in
tree structures, and special-purpose components called Pages serve as root containers.
Wicket uses convention over configuration to match component trees with markup
trees. Models are used as an indirection to locate the data for components.

 You also learned that behaviors form a special class that helps you configure and
extend components using composition rather than inheritance. The two common
forms of behaviors are attribute modifiers and Ajax behaviors.

 Now that you understand the core concepts of Wicket, it’s time to become active!
In the next chapter we’ll build the cheese store we just introduced.

Building a cheesy
Wicket application
Reading about components, pages, and models is interesting, but getting your
hands dirty is more fun. To get a better understanding of working with Wicket, in
this chapter we’ll start building the cheese store we discussed in chapter 2. The
store’s functionality will be limited to the sales front end: the shop with our prime
collection of cheeses and a checkout page so customers can buy our product.

 This is a long chapter, so we’ll cover a lot of ground. Even so, a lot is left as an
exercise for you. We won’t be designing a database and using JDBC, Hibernate, or
any other database technology to create this application, but we’ll look at user
input, validating the input, using premade components in a panel, and creating
your own custom component.

 We assume you’re familiar with setting up a project in your IDE of choice using
Ant or Maven. If not, you should download the free bonus chapter “Setting up a

In this chapter:
■ Displaying items from a list
■ Navigating to another page
■ Processing a form, validating the input and

providing feedback
■ Creating a reusable custom component
45

46 CHAPTER 3 Building a cheesy Wicket application
Wicket project” from this book’s website: http://manning.com/dashorst. It explains
in detail how to set up a Wicket project using Ant and Maven. A quick-start project
template is available as a download from the Wicket project. The template provides all
the items described in the bonus chapter and will enable you to develop and run the
cheese-store application while you read.

 Building the web shop will put to the test the knowledge you gained from chapter 2.
In building our shop, we’ll use the concepts of application, session, component, page,
and model. Fortunately, we won’t go into much detail about these concepts, so you
don’t need to be able to pass a lie-detector test on this subject (yet). If you find it diffi-
cult to place these elements, chapter 2 will provide the necessary foundation. Let’s
first introduce the Cheesr online cheese shop.

3.1 Introducing Cheesr
The online cheese shop will be called Cheesr. We’ll create the two most impor-
tant pages for any web store: the store front, displaying our collection of cheeses
and a shopping cart; and a checkout page where the customer can fill in her
address data and order the selected products. In this section, we’ll introduce the
application and the requirements, and then we’ll show you how to build the pages
one by one.

3.1.1 Setting up shop

The cheese store needs to show the details of our cheese products: the name, a
description, and the list price. When a customer wants to order a cheese product, the
product needs to be added to the order. When the customer is ready to check out, she
needs to fill in her address data for shipping. Like any Web 2.0 website, our web shop
doesn’t care about profitability; so, for now, we won’t add credit-card validation and
processing to the checkout form. Making the shop profitable is one of those exercises
left for you.

 As a database for our collection of cheeses, we’ll create a central, read-only list that
is shared among all customers. As outlined in chapter 2, all Wicket applications need
at least two classes: an application class and a home page. The Application class is
used for configuration and to hold information in a single place that is shared among
all users of your application. This makes it a perfect place for us to store the list of all
cheeses. Our application class will be called CheesrApplication.

NOTE Java web applications are inherently multithreaded. Therefore, be care-
ful with the things you expose in your Application object. In this simple
application, the list of cheeses doesn’t change, nor do the contents of the
objects, making it safe to share them between threads. If we want to pro-
vide a way to update the cheeses, or remove and add cheeses to our col-
lection, we need to properly synchronize access to these resources or use
a proper database abstraction instead of this solution.

47Introducing Cheesr
Because each customer needs his own shopping cart, we’ll store the cart functionality
in the session: the session is specific to each user and can store data across requests.
We’ll create our own session class to store the user’s shopping cart. The session class
will have the surprisingly creative name CheesrSession.

 The quick-start template defines a common base page for all pages in the applica-
tion. As you’ll discover, having a common base page class is convenient for reusing
functionality and markup. In this chapter, we’ll create the CheesrPage base page and
subclass it for the two pages: Index and CheckOut.

 Using Cheese, Address, and Cart, we’ve drawn a diagram showing the classes and
their attributes. Figure 3.1 shows the class diagram for the application.

Now that we’ve identified the key domain objects and the necessary UI classes, it’s
time to begin. We’ll start by implementing the Cart class. The Cart class is a simple
Java object with a couple of properties and a method to calculate the total value of the
contents; see listing 3.1.

public class Cart implements java.io.Serializable {
 private List<Cheese> cheeses = new ArrayList<Cheese>();
 private Address billingAddress = new Address();

 public List<Cheese> getCheeses() {
 return cheeses;
 }
 public void setCheeses(List<Cheese> other) {
 cheeses = other;
 }
 public Address getBillingAddress() {
 return billingAddress;
 }
 public void setBillingAddress(Address other) {
 billingAddress = other;

Listing 3.1 Cart.java: Implementing a simple shopping cart

name
description
price

Cheese

name
street
zipcode
city

Address

cheeses
billingAddress
total

Cart

WebSession WebPage

CheesrPage

Index CheckOut

cart : Cart
CheesrSession

WebApplication

cheeses : List
CheesrApplication

Figure 3.1 The class diagram for the cheese store showing the domain objects and custom
Application and Session classes. The application consists of two pages: the shop front (Index) and
the checkout page (CheckOut).

Must be
serializable

48 CHAPTER 3 Building a cheesy Wicket application
 }
 public double getTotal() {
 double total = 0;
 for(Cheese cheese : cheeses) {
 total += cheese.getPrice();
 }
 return total;
 }
}

This class has one notable aspect: it implements the java.io.Serializable inter-
face. The session can be stored to disk by your servlet container or even transferred
across the network to another node in a cluster to support fail over or load balanc-
ing. Java serialization is used when the session is persisted or sent across the wire like
this. Because we store the shopping cart and its contents in our session, we need to
ensure that they too are serializable. For now, we’ll take a shortcut and make the
objects serializable; in the next chapter, we’ll discuss ways that circumvent the serial-
izable requirement.

 Given the code for the shopping cart, we assume that you’ll be able to implement
the Cheese and Address classes. Just remember to implement the Serializable inter-
face. With our domain objects in place, we can now lay the groundwork for the shop
starting with the Application class.

IMPLEMENTING THE CHEESRAPPLICATION CLASS

Each Wicket application requires its own Application class. In this case, it’s the
CheesrApplication class. The Application class is used to initialize the application
and to configure Wicket (and possibly to set up integration with other frameworks,
such as Spring). You can also use it to hold data that is shared among all your users—
for instance, a cache for objects. In this simple web shop, we’ll use it as a data store
that stores all the cheeses in our collection.

 Listing 3.2 shows how this class is implemented for the shop. We’ve abbreviated the
descriptions of the cheeses to save space.

public class CheesrApplication extends WebApplication {
 private List<Cheese> cheeses = Arrays.asList(
 new Cheese("Gouda", "Gouda is a yellowish Dutch[...]", 1.65),
 new Cheese("Edam", "Edam (Dutch Edammer) is a D[...]", 1.05),
 new Cheese("Maasdam", "Maasdam cheese is a Dutc[...]", 2.35),
 new Cheese("Brie", "Brie is a soft cows' milk c[...]", 3.15),
 new Cheese("Buxton Blue", "Buxton Blue cheese i[...]", 0.99),
 new Cheese("Parmesan", "Parmesan is a grana, a [...]", 1.99),
 new Cheese("Cheddar", "Cheddar cheese is a hard[...]", 2.95),
 new Cheese("Roquefort", "Roquefort is a ewe's-m[...]", 1.67),
 new Cheese("Boursin", "Boursin Cheese is a soft[...]", 1.33),
 new Cheese("Camembert", "Camembert is a soft, c[...]", 1.69),
 new Cheese("Emmental", "Emmental is a yellow, m[...]", 2.39),
 new Cheese("Reblochon", "Reblochon is a French [...]", 2.99));

Listing 3.2 CheesrApplication.java: Application class

Calculate
total value

49Introducing Cheesr
 /**
 * Constructor
 */
 public CheesrApplication() {
 }

 @Override
 protected void init() {
 }

 public static CheesrApplication get() {
 return (CheesrApplication) Application.get();
 }

 @Override
 public Class<? extends Page> getHomePage() {
 return Index.class;
 }

 public List<Cheese> getCheeses() {
 return Collections.unmodifiableList(cheeses);
 }
}

In this example, we first create the grand collection of available cheeses in our store and
put it in a list. The basic application doesn’t have many configuration needs, so the ini-
tialization method is empty b. If you need to set a configuration parameter, you can do
so in this method. Wicket calls this method just before the application is ready to start.

 The next method sets the home page for our shop. The home page is served when
a user hits the Wicket servlet or filter mapping for the application (as configured in
the web.xml deployment descriptor) without any parameters. It’s also used in the
default Wicket Page Expired page for generating the Return to Home link, which
is shown to users when their session has timed out. In this case, the Wicket filter is
mapped to /*; if the context-path of the web-app is /cheesr, a user sees the home page
when browsing to the URL /cheesr.

 Finally, we create the accessor method to the cheese database. In more complex
applications than the Cheesr shop, you’d typically use a service layer to get this infor-
mation from a database. In chapter 13, you’ll learn to use Wicket with a database in
applications. For now, we’ll use this in-memory list (you can consider this a poor per-
son’s cache solution). Let’s continue building the infrastructure by implementing a
custom session object.
IMPLEMENTING A CUSTOM CHEESRSESSION

When a customer wants to order cheese, we need a place to store the order. Because a
shopping cart is unique for each user session, we can store the cart in a custom session
class. As discussed in chapter 2, creating a type-safe session enables you to track what is
stored in the session. Using the HttpSession directly is possible, but we wouldn’t rec-
ommend that practice for pure Wicket applications (you should use it only when you
need to interface with legacy applications or other frameworks).

 Our custom session contains a field that holds the shopping cart, and it provides a
getter for access to the shopping cart. Listing 3.3 shows our custom session.

Initialize
application

b

Get application

Set home page

Get all cheeses

50 CHAPTER 3 Building a cheesy Wicket application
public class CheesrSession extends WebSession {
 private Cart cart = new Cart();

 protected CheesrSession(Request request) {
 super(request);
 }

 public Cart getCart() {
 return cart;
 }
}

We have to tell our application that a new session of this type needs to be created
instead of the default Wicket session. We can configure this by overriding a factory
method—which is responsible for creating Wicket sessions—with one that returns our
custom session in our application object, as shown in the next snippet:

public class CheesrApplication extends WebApplication {
 /** ... */
 @Override
 public Session newSession(Request request, Response response) {
 return new CheesrSession(request);
 }
 /** ... */
}

In this example, we don’t use the request and response parameters. These can be used
to query for cookies in the request or set cookies in the response—for example, to
implement a remember-me functionality where a user’s identity is retained across
multiple sessions by setting a cookie.

 Now that we’re able to store the contents of our customers’ shopping carts, let’s
look at implementing pages.

IMPLEMENTING THE CHEESRPAGE BASE CLASS

The CheesrPage base class helps provide common functionality for all the pages in
our application. You can create base pages for each module of an application—for
instance, an administration base page that requires administrator privileges (see chap-
ter 11 for more information about security), or a ShopPage where you get instant
access to a customer’s shopping cart. Because it’s all pure Java, you can easily achieve
anything you want.

 For our cheese shop, we’ll create a single common base page. Listing 3.4 shows the
Java code for CheesrPage.

public abstract class CheesrPage extends WebPage {
 public CheesrSession getCheesrSession() {
 return (CheesrSession) getSession();
 }

Listing 3.3 CheesrSession.java: Custom session holding the shopping cart

Listing 3.4 CheesrPage.java: Base class for all pages in our application

Get
session

b

51Introducing Cheesr
 public Cart getCart() {
 return getCheesrSession().getCart();
 }

 public List<Cheese> getCheeses() {
 return CheesrApplication.get().getCheeses();
 }
}

The base page doesn’t provide much functionality—just a convenience method to get
at our custom session implementation b without having to add type casts throughout
our application code. We also implement convenience methods to directly access the
shopping cart stored in our custom session c and to retrieve all our cheeses d.

 With these foundations in place, we’re ready to work on the parts of our applica-
tion that customers see and interact with: the UI.

3.1.2 Designing the user interface

The Cheesr online cheese store is created using web standards such as (valid) HTML
and cascading style sheets (CSS). Respecting Wicket’s philosophy of strict separation of
concerns, we’ll use CSS to decouple the way things look in the browser from the struc-
ture of the document. This approach has the benefit that people who know design
can focus on that; programmers can focus on creating code. In this section, we’ll
design a common page layout that will be used for the store’s two pages.
COMMON LAYOUT

For the pages that make up our shop, we’ll adopt the popular two-column design with
the main content in the left column and the shopping-cart contents in the right col-
umn. The two columns will be crowned with a full-width header showing our shop
logo. The general layout and a standard markup template are shown in figure 3.2. In
chapter 7, you’ll learn how to use markup inheritance to apply the general layout con-
sistently to all your pages. For now, each page will duplicate the markup.

 We use div elements to line up the columns and the header. Using CSS, we can
instruct the browser to format and even lay out the content the way we want. In this

Get shopping
cart

c

Get all
cheeses

d

container

content

header

cartmain

<html>
<head>
 <link href="style.css" rel="stylesheet" />
</head>
<body>
<div id="container">
 <div id="header"></div>
 <div id="content">
 <div id="main"></div>
 <div id="cart"></div>
 </div>
</div>
</body>
</html>

Figure 3.2 The general layout of the pages. All content areas are contained in div tags.

52 CHAPTER 3 Building a cheesy Wicket application
example, we’ll keep things a bit dull. Listing 3.5 shows the contents of our CSS file.
You can put the file in the src/main/webapp folder of the Cheesr project. The link
tag shown in figure 3.2 makes sure the stylesheet is included in all our pages.

body {
 margin : 0; padding : 0;
 font-family : georgia, times, serif;
 font-size : 15px;
}
div {
 margin : 0; padding : 0;
}
#container {
 margin-left : auto; margin-right:auto;
 width:720px;
}
#content {
 width : 100%;
 padding-left : 10px; padding-right : 10px;
}
#main {
 width : 480px;
 float : left;
}
#cart {
 width : 220px;
 float : right;
}

#header {
 width : 100%;
 height : 150px;
 background : url(logo.png) center no-repeat;
}
#header h1 {
 display : none;
}

In this example, we highlight the header section b. This is a trick to replace some
text with a graphic element. In our case, we replace <h1>Cheesr</h1> with the com-
pany logo shown in figure 3.3.

 The benefit of this trick is that search engines will see the name of our shop and
assume it’s an important keyword for our website (because it’s enclosed in h1 tags).

Listing 3.5 style.css: The shop’s stylesheet

Cheesy
font

Remove space
between elements

Center content
in window

Main content
goes here

Shopping
cart column

Replace h1
with logo

b

Cheesr FETA2.0
Making cheese taste beta

Figure 3.3

The Cheesr company
logo, ready for Web 2.0

53Creating the store front
This technique also helps with accessibility: screen readers typically can’t read images
(only the alt and title tags), so embedding the logo using CSS enables such readers
to ignore the image and use just the available text. It’s even possible to implement a
specific stylesheet for screen readers, but that is a topic for a different book.

We’ve covered the basics for our application: we have an application object, a session
with a shopping cart, and a basic layout for the application’s pages. Now we can start
building on these foundations and creating the parts where users will interact with
our application. First up is the store front, shown to all our visitors.

3.2 Creating the store front
In this section, we’ll build the page that customers first see when they arrive at our
shop. This is the store front. Our front page is where most users will interact with our
store. It lists the available cheeses and lets users add them to their shopping carts. A
mockup of the front page is shown in figure 3.4.

Separation of concerns: designers like HTML, coders like Java
Wicket gives you complete control over your HTML markup, which means you have a
lot of flexibility in terms of the layout of elements on screen. Your web designers will
be happy that they can apply and preview CSS techniques on top of standard HTML
without scripts or strange tags getting in the way. Some web frameworks like Echo
and GWT take the approach of having the Java developer control the layout in Java
code (similar to Swing). We prefer the Wicket way because of the true separation of
concerns it provides; this allows the designer and the Java programmer to work with-
out stepping on each other’s toes. Getting layout and look and feel to work consis-
tently across different browsers is a tricky business; even if things have improved
over the last few years, you need all the flexibility you can get—and good web-design
skills, of course.

$2.99 per pound add to cart

Gouda
Gouda is a Dutch cheese made of
cow milk. Tastes great on bread.

Your selection

$4.99 per pound add to cart

Emmental
Emmental is a Swiss cheese made
from cow milk. Very nice with a
glass of wine.

Gouda
Emmental
Total

$4.99
$5.98

$10.97

remove
remove

Check out

<< < 1 2 3 4 5 > >>

Cheesr

Figure 3.4

A mockup of the front page. It
consists of a two-column layout:
the left column features the main
content, and the right column
shows the contents of the shopping
cart.

54 CHAPTER 3 Building a cheesy Wicket application
In this figure, you can see the two parts of our application: the main area that presents
our collection of cheeses, and the shopping cart. If many cheeses are available, users
need to be able to browse through the collection using a pagination widget, as shown
at the bottom of the mockup. When a customer is ready to check out, he clicks the
Check Out button. Doing so takes him to the checkout page.

 We’ll first concentrate on the main area that displays the list of cheeses. Next, we’ll
take a shot at implementing the shopping-cart part of our web page.

3.2.1 Cutting to the cheese

Figure 3.5 shows the part we’ll focus on in this section, together with the correspond-
ing markup we’ll transform into a Wicket page.

Taking a closer look at the markup (figure 3.5), you can spot the repeating bits: the
divs with class="cheese" b have the same structure. For every displayed cheese, we
generate this structure, only with different contents: a heading containing the name, a
section with the description, and the price. In addition, each item receives a clickable
link that adds the cheese to the customer’s shopping cart.

 Having identified the components to add, let’s dive into some markup. We’ll
add Wicket identifiers to the tags to which we want to attach components. List-
ing 3.6 shows the markup of our front page, but now with strategically placed
wicket:id attributes.

<html>
<head>
 <title>Cheesr - Making cheese taste beta</title>
 <link href="style.css" rel="stylesheet" />

Listing 3.6 Index.html: Front page markup

$2.99 per pound add to cart

Gouda
Gouda is a Dutch cheese made of
cow milk. Tastes great on bread.

Your selection

$4.99 per pound add to cart

Emmental
Emmental is a Swiss cheese made
from cow milk. Very nice with a
glass of wine.

Gouda
Emmental
Total

$4.99
$5.98

$10.97

remove
remove

Check out

<< < 1 2 3 4 5 > >>

Cheesr

<< < 1 2 3 4 5 > >>

Cheesr

Youruur sel selectiectionon
GGoGoGooGGo
EEmmmEm
TTTTTooo

<div id="main">
 <div class="cheese">
 <h3>Gouda</h3>
 <p>Gouda is a Dutch che...</p>
 <p>$1.99 add to cart</p>
 </div>

 <div class="cheese">
 <h3>Emmental</h3>
 <p>Emmental is a Swiss che...</p>
 <p>$2.99 add to cart</p>
 </div>
</div>

1 Repeats for
each cheese

Name
Description

Price
Clickable
Link

Figure 3.5 The main area and its markup for the front page. The divs with class cheese
are repeated to show the entire collection.

55Creating the store front
</head>
<body>
<div id="container">
 <div id="header">...</div>
 <div id="contents">
 <div id="main">
 <div wicket:id="cheeses" class="cheese">
 <h3 wicket:id="name">Gouda</h3>
 <p wicket:id="description">Gouda is a Dutch...</p>
 <p>
 $1.99
 <a wicket:id="add" href="#">add to cart
 </p>
 </div>
 <wicket:remove>
 <div class="cheese">
 <h3>Emmental</h3>
 <p>Emmental is a Swiss che...</p>
 <p>
 $2.99
 add to cart
 </p>
 </div>
 </wicket:remove>
 </div>
 <div id="cart">...</div>
 </div>
</div>
</body>
</html>

In this example, everything inside the div b is repeated for all cheeses in the list,
including the div tag itself. Inside the div, we add Wicket identifiers to the h3 tag, the
p tag, and the span tag. The span tag is introduced into the markup as a placeholder
for a Label component for displaying the price of the cheese. We also add a Wicket
identifier to the hyperlink (anchor) tag. Because the markup needs to be repeated,
we use a ListView component. A ListView takes a list of objects and repeats its
markup for each item in the list. More about that when we delve into the Java code.

 You probably noticed the special wicket:remove tags in the markup c. Those tags
will remove the enclosed markup from the final rendered page . We have this section
of markup in the page purely to add a second cheese to the list, so that when the page
is previewed, it looks more like it would in real life. Note that previewing the page in
our browser is as simple as loading it from the file system.

 Having placed our component identifiers in the right places in our markup, we
can now progress to the Java code.
IMPLEMENTING THE JAVA CODE

As you already know from chapters 1 and 2, each Wicket page consists of both a markup
file and a Java file. Their names must be the same, except for the extension. Name the
files Index.html and Index.java, and put both files in the same directory on the classpath:
Wicket will automatically find the HTML file when the page needs to be constructed.

ListView
repeats
contained
markup

b

Removed from
final markup

c

56 CHAPTER 3 Building a cheesy Wicket application
NOTE Some IDEs need to be told to copy the HTML files to the generated class’s
directory. Wicket complains with an error message like “WicketMessage:
Markup of type ‘html’ for component ‘com.cheesr.Index’ not found.”
When you get this error, Wicket is unable to find the markup template.
Typically, this happens when your IDE isn’t configured to copy the
markup files to the classpath. For instance, Eclipse doesn’t automatically
copy the HTML files. You can easily configure this by modifying the
project settings so no filters are set for the source folder.

As we discussed in section 3.1, our page will inherit from the common base class
CheesrPage (shown in listing 3.4). The Java code for our page is shown in listing 3.7,
where we’ve added the identified components.

public class Index extends CheesrPage {
 public Index() {
 add(new ListView("cheeses", getCheeses()) {

 @Override
 protected void populateItem(ListItem item) {
 Cheese cheese = (Cheese) item.getModelObject();
 item.add(new Label("name", cheese.getName()));
 item.add(new Label("description",
 cheese.getDescription()));
 item.add(new Label("price", "$" + cheese.getPrice()));

 item.add(new Link("add", item.getModel()) {

 @Override
 public void onClick() {
 Cheese selected = (Cheese) getModelObject();
 getCart().getCheeses().add(selected);
 }
 });
 }
 });
 }
}

We pass the list of cheeses into the ListView constructor b so the ListView knows
which items to render. For each cheese in our list, the ListView creates a ListItem
and calls the populateItem method c, where we add our components to the List-
Item to show the details of each cheese. The ListItem is used as the container for
each repeated component: the components must be added to the ListItem, not the
ListView. Figure 3.6 shows the structure of the ListView.

 Each will have a cheese associated with it in its model: item 0 will contain cheese 0
from the list, item 1 will contain cheese 1 from the list, and so forth. To get at the
cheese object, we have to retrieve the model object from the item d. Then we can use
it to create the remaining components. In this case, we add three label components to
the list item: the name, description, and price labels e.

Listing 3.7 Index.java: Class implementing the front page

Add
ListView

b Called
for each
cheese

c

Get cheesed

Add
labels

e

Add to
cart
link

f

57Creating the store front
Finally, we added a Link component to the list item f. In the onClick event handler,
we want to add the selected cheese to the shopping cart. That’s why we provide the
link with the list item’s model object: this way, the link will know which cheese to add
when it’s clicked. In the onClick event, we retrieve the cheese and add it to the shop-
ping cart. Wicket will re-render the page, because we didn’t tell it to do otherwise. Fig-
ure 3.7 shows how the page looks in a browser.

Li
st

V
ie

w
Li

st
V

ie
w

ListItem

Label Link

ListItem
ListItem

Label Link

ListItem
ListItem

Label Link

ListItem

Label Link

ListItem

Label Link

protected void populateItem(ListItem item) {
 item.add(new Label("name", ...));
 item.add(new Link("link") {...});
}

new ListView("list",
 getCheeses()) { ... }

Figure 3.6 The ListView dissected. A ListView repeats the markup using ListItems. Each
ListItem is populated with the repeated components in the populateItem method. In this
example, each ListItem gets a Label and a Link. Chapter 5 will go into more detail concerning the
ListView and its cousins.

Figure 3.7 The Cheesr front page. It shows our company logo and the selection of available
cheeses, with price tags and a link to add cheeses to the shopping cart.

58 CHAPTER 3 Building a cheesy Wicket application
Clicking the Add link to add a fine piece of Edam cheese to our shopping cart causes
the page to refresh, but the shopping cart still looks empty: we haven’t implemented
the shopping-cart functionality.

3.2.2 Adding the shopping cart

Now that customers can look at our grand collection of fine cheeses and add them to
their shopping cart, it’s time to show the cart’s contents on the front page. Figure 3.8
shows the page and the markup that belongs to the shopping cart.

In the example markup in figure 3.8, we left out some of the repeating bits; however,
you can see that the table row tr is repeated for all elements in the shopping cart b.
Inside each table row are two labels and a link. The labels show the name of the item
and the price. The link gives the customer the option of removing elements from the
shopping cart.

 It’s nice to show the total value of the customer’s shopping cart so he doesn’t have
to add the prices himself; c displays the total value of the cart. When the customer
wants to order the items in the shopping cart, he can click the Check Out button,
which takes him to the checkout page d. We’ll implement the Check Out button in
the next section.

 Now that we’ve identified the components, it’s time to work on our markup and
add the Wicket identifiers; see listing 3.8.

<div id="cart">
 <h3>Your selection</h3>
 <table>
 <tbody>
 <tr><td>Gouda</td><td>$4.99</td><td>remove</td></tr>
 <tr><td>Edam </td><td>$5.98</td><td>remove</td></tr>
 </tbody>
 <tfoot>
 <tr class="total">
 <th>Total</th>
 <td>$10.97</td>
 <td> </td>
 </tr>
 </tfoot>
 </table>
 <input type="button" value="Check out" />
</div>

3 Submit form

2 Calculate total

1Show all
cheeses

Figure 3.8 The markup for the shopping cart. We use a table to lay out the items in the shopping cart.
Try to identify the repeating bits before reading further, and imagine how you would implement this cart.

59Creating the store front
<html>
...
<body>
<div id="container">
 <div id="header">...</div>
 <div id="content">
 <div id="main">...</div>
 <div id="cart">
 <h3>Your selection</h3>
 <table>
 <tbody>
 <tr wicket:id="cart">
 <td wicket:id="name">Gouda</td>
 <td wicket:id="price">2.99</td>
 <td><a wicket:id="remove" href="#">remove</td>
 </tr>
 <wicket:remove>
 <tr>
 <td>Emmental</td>
 <td>$1.99</td>
 <td>remove</td>
 </tr>
 </wicket:remove>
 </tbody>
 <tfoot>
 <tr class="total">
 <th>Total</th>
 <td wicket:id="total">$1.99</td>
 <td> </td>
 </tr>
 </tfoot>
 </table>
 <input type="button" value="Check out" />
 </div> <!-- cart -->
 </div> <!-- content -->
</div> <!-- container -->
</body>
</html>

Looking closely at the markup, you’ll notice that we attach the Wicket identifiers for
the name and the price directly to the td tags instead of introducing a span or div ele-
ment. The label component used to show the data doesn’t require a particular tag to
do its job: as long as the tag has a body, the label will replace it with its value.

 It’s time to create Java components to go with the markup. The next snippet imple-
ments the shopping-cart functionality for our front page:

add(new ListView("cart", new PropertyModel

 (this, "cart.cheeses")) {

 @Override
 protected void populateItem(ListItem item) {
 Cheese cheese = (Cheese) item.getModelObject();

Listing 3.8 Adding the shopping cart’s markup to Index.html

ListView repeats
contained markup

b

Removed from
final markup

c

Show total
costd

Get selected
cheeses

b

Called for each
selected cheese

Get selected
cheese

60 CHAPTER 3 Building a cheesy Wicket application
 item.add(new Label("name", cheese.getName()));
 item.add(new Label("price", "$" + cheese.getPrice()));

 item.add(new Link("remove", item.getModel()) {

 @Override
 public void onClick() {
 Cheese selected = (Cheese) getModelObject();
 getCart().getCheeses().remove(selected);
 }
 });
 }
});
add(new Label("total", "$" + getCart().getTotal()));

Here we show only the cheeses the customer has added to the shopping cart b. At
first it’s empty, but with each click of the Add link, a new item is added.

 In the populateItem method, we add label components to each list item to display
the cheese’s name and the price c. We also add a link to remove the cheese from the
shopping cart d. Because the link needs to know which item to remove from the list,
we provide the link with the same model as the list item. This allows us to get to the
selected cheese when the link is clicked e and remove it from the cart. The label show-
ing the total value of the selected cheeses in the cart is the last component we add.

 We’re ready to start up the server and run the application. Now, when we click the
Add link, we can see items added to our shopping cart. Figure 3.9 shows a before and
after screenshot of our front page.

 In the after screenshot, you can see one small problem: the total amount isn’t cor-
rect. In fact, it hasn’t changed from the initial value (shown in the before shot). If you
open your debugger and check the value of the getTotal method in the shopping
cart each time you add a cheese to the cart, you’ll see that getTotal returns the cor-
rect value every time. We have a method that works as advertised, but what we see isn’t
what we expect. What is happening here?

Add
labels

c

Get selected
cheese e

Add Remove link d

Figure 3.9 Before and after screenshots of our shopping cart when adding cheeses

61Creating the store front
If you take a closer look at the way we add the label, you may spot the problem:

public class Index extends CheesrPage {
 public Index() {
 /* ... */
 add(new Label("total", "$" + getCart().getTotal()));
 }
}

To make things clearer, you can set a break point on this line and add some cheeses to
your shopping cart. You’ll notice that the debugger stops here only once: the first time
you hit the page in a session.

 The problem is caused by the fact that in this code, we determine and set the value
of our label at construction time. The constructor for the page is called only the first
time we request the page. After we’ve added our first cheese, the constructor isn’t
called, unless we explicitly invoke it. Our label doesn’t know the value has changed.
We need to be able to update the value on each request.

 In chapter 4, we’ll discuss the differences between static models and dynamic mod-
els (the issue at hand) in greater depth. For now, we’ll solve the problem by providing
the label with a model that calculates its value every time it’s requested:

add(new Label("total", new Model() {
 @Override
 public Object getObject() {
 NumberFormat nf = NumberFormat.getCurrencyInstance();
 return nf.format(getCart().getTotal());
 }
}));

We override the getObject method to return the display value of the price: every time
the label renders itself, it calls this method. In this case, we format the value using a Num-
berFormat and return the formatted string. If we run the store after we’ve updated this
piece of code, the amount is updated whenever we add or remove items. See figure 3.10.

Figure 3.10 The shopping cart before and after we fixed the total amount

62 CHAPTER 3 Building a cheesy Wicket application
In these screenshots, you can see the Check Out button. Clicking the button doesn’t
accomplish anything yet. In the next section, we’ll implement the Check Out button
and provide a starting point to build our checkout page.

3.2.3 Going to check out
An online shop without a checkout page is of little value to its owners. Let’s imple-
ment a way to get to the checkout page. First, we need to create the page we’ll link to:
our first assignment is to create an empty checkout page. In section 3.3, we’ll imple-
ment the page functionality. For now, we create two files: a Java file with an empty class
that extends our CheesrPage, and an HTML file based on our standard layout, as
shown in listing 3.9.

/* CheckOut.java */
public class CheckOut extends CheesrPage {
 public CheckOut() {
 }
}

<!-- CheckOut.html -->
<html>
 <head>
 <title>Cheesr - checkout</title>
 <link href="style.css" rel="stylesheet" />
 </head>
 <body>
 <div id="container">
 <div id="header"><h1>Cheesr</h1></div>
 <div id="contents">
 <div id="main"></div>
 <div id="cart"></div>
 </div>
 </div>
 </body>
</html>

We haven’t added Wicket identifiers to the markup yet: the page doesn’t provide any
functionality. Now that we have the bare minimum for the checkout page in place, we
can create a link to it. The link is the Check Out button described in figure 3.7, where
we showed the markup for the shopping cart. The markup for our Check Out button,
including a Wicket identifier, is as follows:

<input type="button" wicket:id="checkout" value="Check Out" />

We’ll use a Link component to implement the behavior for this button. The Link is
added to our Index page in the following snippet:

public Index() {
 /* ... */
 add(new Link("checkout") {
 @Override
 public void onClick() {

Listing 3.9 CheckOut.java and CheckOut.html implementing an empty page

63Creating the store front
 setResponsePage(new Checkout());
 }
 });
}

Just as with our previous Link components, we need to subclass the link and provide it
with our own implementation of the onClick event. In this case, we set the response
page to a new instance of our checkout page. Wicket renders the freshly created
checkout page and returns it to the browser.
HIDING THE CHECK OUT BUTTON FOR AN EMPTY CART

To make things even nicer, we can hide the button when there is nothing in the shop-
ping cart. This way, our users can’t go to the checkout page without a valid reason. To
do this, we have to override the isVisible method on the link (the isVisible
method is defined for the root Component class and is therefore available to all compo-
nents to override as they wish) and change the visibility based on the number of items
in the cart. The following snippet shows how this can be done in Java code:

public Index() {
 /* ... */
 add(new Link("checkout") {
 @Override
 public void onClick() {
 setResponsePage(new Checkout());
 }

 @Override
 public boolean isVisible() {
 return !getCart().getCheeses().isEmpty();
 }
 });
}

Now, if we restart the application and navigate to the store front, we see the left
screenshot from figure 3.11: a shopping cart without the Check Out button. When we

Hide button for
empty cart

Figure 3.11 The Check Out button appears after we add cheese to our cart.

64 CHAPTER 3 Building a cheesy Wicket application
add cheese to the shopping cart, the Check Out button magically appears, as shown
on the right.

 Our customers can now put our prime selection of cheeses in their shopping carts
and immediately see the cost of their purchases. If their weekly cheese budget of $10
isn’t used up, they can scroll down to the Roquefort and add it to the cart. But what
happens if we have more than 100 cheeses in our collection? Or if we reach 1,000?
Let’s make the store more user friendly by adding the ability to browse through our
collection page by page—instead of having to scroll through a long list.

3.2.4 Adding pagination to the list of cheeses

There are a lot of cheeses in the world, and if we want to provide the full spectrum,
the front page could take a while to load. We need to limit the number of cheeses
shown per request. We’ll do this by adding pagination to the front page—more specif-
ically, to the list of our cheeses. When you look at the mockup of the front page in fig-
ure 3.4 you can see that we have to add a pagination component.

 The pagination component at the bottom seems like a lot of work. Fortunately,
Wicket provides this pagination component out of the box: the PagingNavigator. It is
nothing but a Wicket Panel on which several components are bundled and working
together. The navigator contains links to each of the pages, links to navigate to the
previous or next page, and links to the first and last pages in the list. Let’s add this
component to our markup. You might expect something like this:

<div class="cheese" wicket:id="cheeses">
 <h3 wicket:id="name">Gouda</h3>
 <p wicket:id="description">Gouda is a Dutch ...</p>
 <p>
 $2.99
 <a wicket:id="add" href="#">add to cart
 </p>
</div>
<div id="paginator">
 <<
 <
 1
 2
 >
 >>
</div>

But that isn’t how the PagingNavigator should be added. Because the PagingNaviga-
tor is a panel, we can’t add its markup to the page. First, doing so would violate the
DRY principle. If we did this, we’d need to copy the markup of all our components
into the final page, which would be brittle. A change in a component would require us
to update the markup of all pages where the component was used. What should we
add? Just a span or div element as a placeholder for the component, with a wicket
identifier for referencing it. In our this case, we use a div. Let’s see how this looks in
the markup:

65Creating the store front
<div class="cheese" wicket:id="cheeses">
 <h3 wicket:id="name">Gouda</h3>
 <p wicket:id="description">Gouda is a Dutch ...</p>
 <p>
 $2.99
 <a wicket:id="add" href="#">add to cart
 </p>
</div>
<div wicket:id="navigator"></div>

This looks a lot more civilized than the previous example. At the very least, we won’t
have to add all those links to the page ourselves: the navigator takes care of that.

NOTE The ability to preview the page suffers a bit because the navigator compo-
nent markup isn’t shown. This can be alleviated by adding some mock
markup between the div tags, which is replaced at runtime; but usually it
isn’t worth the effort. Particularly when a panel consists of a lot of
dynamic components, it’s generally hard to maintain the previewability
of the page where the panel is used.

Now, let’s look at the Java side of things. We already said we’re going to use the Paging-
Navigator component. This component can work only on a pageable component imple-
menting the IPageable interface.

 Unfortunately, the ListView component we used in our page doesn’t implement
this interface. However, Wicket supplies a PageableListView that implements the
required interface. When we change our page in such a way that the current ListView
becomes a PageableListView, and we add the navigator to the page, we should be all
set. Let’s see how this plays out in the next snippet:

 public Index() {
 PageableListView cheeses
 = new PageableListView("cheeses", getCheeses(), 5) {
 @Override
 protected void populateItem(ListItem item) {
 Cheese cheese = (Cheese) item.getModelObject();
 item.add(new Label("name", cheese.getName()));
 item.add(new Label("description",
 cheese.getDescription()));
 item.add(new Label("price", "$" + cheese.getPrice()));

 item.add(new Link("add", item.getModel()) {

 @Override
 public void onClick() {
 Cheese selected = (Cheese) getModelObject();
 getCart().getCheeses().add(selected);
 }
 });
 }
 };
 add(cheeses);
 add(new PagingNavigator("navigator", cheeses));
 /* ... */
}

Add paging
navigator

Enable
pagination

b

Add pagination
component

c

66 CHAPTER 3 Building a cheesy Wicket application
We change the ListView into a PageableListView b and add one extra parameter to
the constructor: the number of items to show per page (in this case, 5). We also add the
PagingNavigator to the page and provide the navigator with the list view c. The results
of this hard work are shown in figure 3.12, where you can see the navigator in action.

 Our front page is now complete: customers can browse our vast collection of
cheeses and place items in the shopping cart. They can remove items, and they don’t
have to calculate the value of the shopping cart themselves. Now it’s time to lighten
our customers’ wallets.

3.3 Creating the checkout page
The checkout page is the final step in a visit to our shop. It requires the customer to
fill in several fields for billing information, and it shows the selected cheeses. The cus-
tomer can cancel the checkout and return to the front page with all the items still in
her shopping cart. When she clicks the Order button, the order is processed. Fig-
ure 3.13 shows a mockup of this page.

 All the fields are required for a successful completion of the order. When the cus-
tomer forgets to fill one or more, we’ll highlight the fields that require a value. In
addition, the ZIP code field must be numeric.

Buxton Blue
Buxton Blue cheese is an English
Blue Stilton. It is made from cow
russet colouring. It is usually mad
complemented with a chilled glas

$0.99 Add to cart

<< < 1 2 3 > >>

Camembert
Camembert is a soft, creamy Fren
crumbly and relatively hard, but
more runny and strongly flavored
in many dishes, but it is popularly

$1.69 Add to cart

<< < 1 2 3 > >>

Reblochon
Reblochon is a French cheese fro
cheese has a nutty taste that rema
has been enjoyed. It is an essentia
gratin made from potatoes, create

$2.99 Add to cart

<< < 1 2 3 > >>

Figure 3.12 Screenshots using the paging navigator, showing pages 1, 2, and 3

Billing Address

Name Text Field

Street Text Field

Zip Text Field

City Text Field

Cancel Order!

Cheesr

Your selection

Gouda
Emmental
Total

$4.99
$5.98

$10.97

remove
remove

Figure 3.13

A mockup of the checkout page

67Creating the checkout page
3.3.1 Adding the billing address form

Almost all websites need users to enter and submit information, and our web shop is
no exception to this rule. In order to close the deal, we need a form with input fields
and buttons. Our current implementation of the checkout page (created in the previ-
ous section) is merely a stub. It contains only the logo and no components. In its cur-
rent state, it’s unlikely to generate any revenue for us. We’ll fix that and show how to
create a billing address form for our customers and add validation to the mix. Recall
the markup for this page from listing 3.9:

<html>
 <head>
 <title>Cheesr - checkout</title>
 <link href="style.css" rel="stylesheet" />
 </head>
 <body>
 <div id="container">
 <div id="header"><h1>Cheesr</h1></div>
 <div id="content">
 <div id="main"> </div>
 <div id="cart"></div>
 </div>
 </div>
 </body>
</html>

The billing address form should go into the main area b. Figure 3.14 shows how the
markup for the form part should look like to get the desired page.

 The example markup embeds a form inside the main area. Inside the form, we put
all the input fields required for us to complete the checkout: the name, street, ZIP

Form goes
hereb

Your selection

Cheesr

Gouda
Emmental
Total

$4.99
$5.98

$10.97

remove
remove

Check out

Order!Cancel

City Text Field

Zip Text Field

Street Text Field

Name Text Field

Billing Address

Cance

City Text FielTT

Zip Text FielTT

Street Text FielTT

Name Text FielTT

Billing Address Your selection

CCCheesr

Gouda
Emmental
Total

$4.99
$5.98

$10.97

remove
remove

Check out

O dOrd !er!l

ldddd

ldd

ldd

ldd

s

<div id="main">
 <form>
 <table>
 <tr><th>Name</th> <td><input type="text" /></td></tr>
 <tr><th>Street</th> <td><input type="text" /></td></tr>
 <tr><th>Zip</th> <td><input type="text" /></td></tr>
 <tr><th>City</th> <td><input type="text" /></td></tr>
 <tr>
 <th> </th>
 <td>
 <input type="button" value="Cancel"/>
 <input type="submit" value="Order!"/>
 </td>
 </tr>
 </table>
 </form>
</div>

Text fields

Cancel
order

Process
order

Figure 3.14 The markup of the billing address form

68 CHAPTER 3 Building a cheesy Wicket application
code, and city. The user can cancel the order by clicking the Cancel button or confirm
the order by clicking the Order button.

 Listing 3.10 shows the form markup, but now with Wicket component identifiers
attached to the tags identified previously.

<div id="main">
<form wicket:id="form">
<h3>Check out</h3>
<p>Please enter your billing address.</p>
<table>
 <tr>
 <th>Name</th>
 <td>
 <input wicket:id="name" type="text" />
 </td>
 </tr>
 <tr>
 <th>Street</th>
 <td>
 <input wicket:id="street" type="text" />
 </td>
 </tr>
 <tr>
 <th>Zip code</th>
 <td>
 <input wicket:id="zipcode" type="text" />
 </td>
 </tr>
 <tr>
 <th>City</th>
 <td>
 <input wicket:id="city" type="text" />
 </td>
 </tr>
 <tr>
 <th> </th>
 <td>
 <input type="button" wicket:id="cancel" value="Cancel" />
 <input type="submit" wicket:id="order" value="Order!" />
 </td>
 </tr>

</table>
</form>
</div>

If you open the page from the file system in a browser, you can see that it’s beginning
to look a lot like the page we’re going to build. In the markup, we add component
identifiers to the form, its input fields, and the buttons. Let’s look at the Java code for
the form and the fields first.

Listing 3.10 Billing address form with component identifiers

Form component

TextField
components

Link component

Button component

69Creating the checkout page
ADDING THE FIELDS TO THE BILLING ADDRESS FORM

The Java code for the form and the fields is basic, as shown in listing 3.11.

public class CheckOut extends CheesrPage {
 public CheckOut() {
 Form form = new Form("form");
 add(form);
 Address address = getCart().getBillingAddress();

 form.add(new TextField("name",
 new PropertyModel(address, "name")));
 form.add(new TextField("street",
 new PropertyModel(address, "street")));
 form.add(new TextField("zipcode",
 new PropertyModel(address, "zipcode")));
 form.add(new TextField("city",
 new PropertyModel(address, "city")));

 }
}

Even though the listing is short, lots of things happen. First, we add the form to the
page, and then we add the text fields to the form. The fields need to be part of
the form; otherwise, their input won’t be submitted with the form. Each field is bound
to its corresponding Address property using a PropertyModel. The PropertyModel
retrieves the value of the property when the field is rendered and pushes the input
value of the field into the Address object’s property when the form is submitted. But
what happens to the input when the form is submitted?

 When a form is submitted, all the input fields’ values are submitted with the
HTTP request. Wicket processes the request and assigns the correct request parame-
ter to each form component. Then, the form processing kicks in. It involves the fol-
lowing steps:

1 Check to be sure the required fields have input.
2 If so, convert the input to the new value for the model.
3 If converted, validate the new converted value using any registered validators.
4 If all previous steps have been successful for all fields, set the new value on the

model of each field.

The conversion in step 2 is needed because the HTTP protocol transmits all request
parameters using strings. In Java, we typically have Date, Integer, Double, and other
values that aren’t string types. Step 2 converts the string value of the request parame-
ter into the actual type of the model. In our example, the ZIP code is converted into
an Integer.

 When the conversion step is successful, each field on the form (and the form
itself) calls the registered validators. Examples of using validators include checking
the length of a name field and validating the format and checksum of a Social Security

Listing 3.11 CheckOut.java: Checkout page with form components added

70 CHAPTER 3 Building a cheesy Wicket application
number. If step 1, 2, or 3 fails, step 4 isn’t executed, to prevent invalid data from ending
up in our data objects. Wicket then renders the page again, retaining the users’ input in
the form components. This, in a nutshell, is how Wicket form fields populate their mod-
els. If you want to crack the nutshell and learn about its innards, see chapter 6.

 Now that we have this cleared up, we imagine you’re anxious to see the results in the
application. But wait! Have you ever seen a web page with buttons that don’t do anything?1
ADDING THE BUTTONS TO THE BILLING ADDRESS FORM

We still have to implement two buttons on our form: Cancel and Order. The Cancel
button can be a link, because its job is only to return to the front page without doing
anything else. We can skip all formalities of converting and validating the input: we
won’t use it anyway.

 The Order button is a whole other beast. It does have to validate and convert the
input. Therefore, we’ll use a Button component for the Order button to submit
the form. In listing 3.12, we leave out the processing of the order, because the art of
packaging and shipping cheese isn’t in the scope of this book (phew!).

public Checkout() {
 Form form = new Form("form");
 ...
 form.add(new Link("cancel") {
 @Override
 public void onClick() {
 setResponsePage(Index.class);
 }
 });
 form.add(new Button("order") {
 @Override
 public void onSubmit() {
 Cart cart = getCart();

 // charge customers’ credit card
 // ship cheeses to our customer
 // clean out shopping cart
 cart.getCheeses().clear();

 // return to front page
 setResponsePage(Index.class);
 }
 });
}

You may be surprised by the value of the parameter we set the response page to:
Index.class instead of new Index. It instructs Wicket to redirect the browser to our
front page. This generates a bookmarkable URL. The sidebar “Explaining setResponse-
Page” explains more of the inner workings of the setResponsePage method.

1 Except the 1996 classic “The really big button that doesn’t do anything,” at http://www.pixelscapes.com/
spatulacity/button.htm.

Listing 3.12 Adding the Cancel and Order buttons to the checkout form

http://www.pixelscapes.com/spatulacity/button.htm
http://www.pixelscapes.com/spatulacity/button.htm

71Creating the checkout page
Explaining setResponsePage
When you want to tell Wicket to render a different page than the current one, you have
to tell the framework which page to render. Server-side request handling usually con-
sists of two phases:

■ Request listener handling—Invokes a server-side listener, such as a link-click lis-
tener, a form-submit listener, or an Ajax behavior

■ Rendering—Renders the response to the browser (for example, the current page,
a new page, an Ajax response, or possibly a PDF, image, or other resource)

During the listener-handling phase, you can tell Wicket which page should be ren-
dered as the response. If no response is specified, Wicket renders the current page.
The method setResponsePage tells Wicket which page should be rendered in the
rendering phase. The last page that is specified is used, so you can call the method
multiple times.

setResponsePage comes in two flavors. In the first, you instantiate the page that will
be rendered, as shown in the following snippet:

setResponsePage(new CheeseDetailsPage(selectedCheese));

This renders the CheeseDetailsPage showing the selected cheese and sets the URL
in the browser to something like

http://cheesr.com/app/?wicket:interface=:21::::

This URL tells Wicket that the page that was requested is page number 21 relative
to the start of the user’s session. It’s session relative and isn’t bookmarkable be-
cause the URL doesn’t contain information about the page that was requested or the
selected cheese—this state is stored in the user’s session on the server, which is
lost when the session is invalidated.

The second form of setResponsePage instructs Wicket to create the page for you
and generate a bookmarkable URL:

setResponsePage(CheeseDetailsPage.class,
 new PageParameters("cheese="+cheese.getName()));

This form tells Wicket to redirect the browser to a bookmarkable URL that encodes
some state: the page that needs to be rendered and the selected cheese. When the
browser receives the redirect, it requests the page, and Wicket creates the Cheese-
DetailsPage automatically. The generated URL looks different, depending on whether
the page was mounted and which URL coding strategy was used (see chapter 14 for
more information). When the page isn’t mounted, Wicket generates the following URL:

http://cheesr.com/?wicket:bookmarkablePage=:com.cheesr.CheeseDetailsPage&cheese=edam

Most of the time, you can use a BookmarkablePageLink component instead of using
the bookmarkable form of setResponsePage. BookmarkablePageLink is discussed
in chapter 5 along with several other link components.

72 CHAPTER 3 Building a cheesy Wicket application
Now that we have the buttons in place, we can fire up our application, start our
browser, and order some cheese. Figure 3.15 shows the Check Out page with the billing-
address form in place.

 If we don’t fill in our personal data, but we click the Order button, what do you
think happens? At best, we’ll be shipping several kilos of cheese to the bit bucket,
because where would we ship the cheese without an address? More likely, we’ll be pre-
sented with a stack trace containing a NullPointerException, because our order-
processing code doesn’t expect empty data. To make sure our customers get what they
ordered, we must guide them to fill in the data correctly. In the next section, we’ll add
validations to our form components and provide internationalized feedback messages
to our users.

3.3.2 Adding validation to the billing-address form

Nothing is more frustrating when using a website (or any application, for that matter)
than making a mistake while typing and getting no response, a detailed stack trace, or
a crashed application. One of the things that should be high on the priority list of any
application builder is validating users’ input and providing proper feedback. In this
section, we’ll add feedback to our checkout page. First we’ll check that all required
fields are completed. Next, we’ll check whether the ZIP code value is a number.
MAKING THE FIELDS REQUIRED

The validation for required fields is performed before conversion and before other
validations are triggered. An input value fails the required check when it’s empty:
either it isn’t present in the request, or it consists only of whitespace. You make a field
required by setting the required flag, as illustrated in the next snippet:

public class CheckOut extends CheesrPage {
 public CheckOut() {
 Form form = new Form("form");
 add(form);
 Address address = getCart().getBillingAddress();

Figure 3.15

The Check Out page with
the billing-address form

73Creating the checkout page
 form.add(new TextField("name", ...).setRequired(true));
 form.add(new TextField("street", ...).setRequired(true));
 form.add(new TextField("zipcode", ...).setRequired(true));
 form.add(new TextField("city", ...).setRequired(true));
 ...
 }
}

If we now start the application, go to the checkout page, and try to submit the form
without setting any values, we no longer exit the page. It looks as if clicking the button
has no effect, but actually the required validation prevents the form from being sub-
mitted. Unfortunately, we don’t see any hint why we can’t submit the form. To do that,
we need a way to display feedback.
ADDING A FEEDBACK PANEL

Wicket uses a feedback queue to store feedback messages. You can add messages to
the queue by calling info(), warning(), or error() on any component. The message
is stored in the queue until it’s read by a feedback component. Wicket provides the
FeedbackPanel component, which reads messages from the queue and displays them
in a list. If necessary, the messages can be filtered so that a particular feedback panel
shows messages only from a specific component, and no messages from other compo-
nents. But that is too advanced for our purposes here.

 In the next snippet, we add a plain FeedbackPanel to our page. The feedback
panel needs a place in the markup:

<div id="main">
<div wicket:id="feedback" class="feedback"></div>
<form wicket:id="form">
<h3>Check out</h3>
<p>Please enter your billing address.</p>
 ...

We add the feedback panel as the first component inside the main area. Now, we have
to add the panel to the page, as illustrated in the next snippet of Java code:

public class CheckOut extends CheesrPage {
 public CheckOut() {
 add(new FeedbackPanel("feedback"));
 Form form = new Form("form");
 add(form);
 ...
 }
}

In this snippet, we add the feedback panel to the page. Now that the feedback panel is in
place, we can look at it in the browser. Restart the application, and try to submit the check-
out form without filling in any values. If you enter a value that isn’t a number in the ZIP
code field, the result should resemble figure 3.16, depending on the country you live in
and which language you set as a default in your operating system (or browser).

 These messages are provided by Wicket out of the box for over a dozen languages,
including Dutch, Finnish, Swedish, Thai, Simplified Chinese, Japanese, Hungarian,

Feedback
goes here

74 CHAPTER 3 Building a cheesy Wicket application
German, French, and of course English. Almost all validators that Wicket supplies
have translated messages available. Chapter 12 goes into detail about Wicket’s interna-
tionalization and localization capabilities.

 You can get more validations by adding them to the form component that you
want to validate. For instance, if we want to ensure that the name is at least 5 and at
most 32 characters long, we add a LengthValidator to the Name field, as shown in
the next snippet:

field.add(StringValidator.lengthBetween(5, 32));

More validators are available. You can use your IDE to quickly locate them (Eclipse users,
select Navigate > Open Type in Hierarchy, and type IValidator in the pop-up box), or
you can look at table 6.2 in chapter 6 to see all the currently available validators. Chapter
6 also shows you how to customize the validation messages for your own application.

 Turning our attention back to our page, we aren’t finished yet: even though we’re
now able to send invoices to our customers, our customers like to see what they’re
going to receive in return for their hard-earned money. Let’s add the shopping cart to
our checkout page.

3.3.3 Creating a reusable shopping cart

One of the great advantages of Wicket is the ability to create reusable components
without much fuss. Until now, we’ve only reused components provided by Wicket: all
the Label, Link, TextField, and ListView components we added to our pages. The
most complex component we’ve reused so far is the PagingNavigator, added to the
front page in section 3.2.3. How hard would it be to create your own, rich component?
We’ve dedicated chapters 8 and 10 to this subject, not because it’s difficult, but
because we think the ability to easily create rich components is one of Wicket’s best
features. To give you a taste of creating reusable components, we’ll create a reusable
shopping-cart component using the cart from the front page, and add it to our check-
out page. Figure 3.17 shows what this means.

Figure 3.16 International feedback messages. Wicket provides translated basic feedback messages
for over a dozen languages, including English, Dutch, and Japanese.

75Creating the checkout page
When you want to create a custom component, the best option is to use a Panel. A
Panel is a Wicket component that has its own associated markup, just like a Page. The
difference is that you can include a Panel anywhere on any page, include it in other
panels, or even add it recursively to itself. Let’s first create our ShoppingCartPanel
Java class and markup file and put them next to the Index page’s files. Listing 3.13
shows the Java file without components.

/**
 * Panel for displaying the contents of a shopping cart. The cart
 * shows the entries and the total value of the cart. Each item
 * can be removed by the user.
 */
public class ShoppingCartPanel extends Panel {
 private Cart cart;
 public ShoppingCartPanel(String id, Cart cart) {
 super(id);
 this.cart = cart;
 }

 private Cart getCart() {
 return cart;
 }
}

The shopping-cart panel takes two parameters in its constructor: the component iden-
tifier and the cart. Wicket uses the component identifier to identify the component in
the markup, just as we’ve consistently done with our labels and links. In this case, we
pass the identifier on to the superclass and let Wicket take care of that. In general, it’s
important to allow users to pass the component identifier in a custom component,
because it makes it possible for the component to be reused several times on the same
page, and you don’t force others to use a particular identifier in the markup.

 The cart is stored with the panel as a property. We also add a method to access the
contents of the shopping cart. This makes it easier to move the shopping-cart code

Listing 3.13 ShoppingCartPanel.java: Base for the reusable panel

Panel

ShoppingCart
Panel

Billing Address

Name Text Field

Street Text Field

Zip Text Field

City Text Field

Cancel Order!

Cheesr
Your selection
Gouda
Emmental
Total

$4.99
$5.98

$10.97

remove
remove

esr

CancelCancel Ordeerrrr!eerdeeerOrddeeeerr

eeeee

$2.99 per pound add to cart

Gouda
Gouda is a Dutch cheese made of
cow milk. Tastes great on bread.

Your selection

$4.99 per pound add to cart

Emmental
Emmental is a Swiss cheese made
from cow milk. Very nice with a
glass of wine.

Gouda
Emmental
Total

$4.99
$5.98
$10.97

remove
remove

Check out

<< < 1 2 3 4 5 >
>>

Cheesr

$2.99 per pound add to cart

Gouda
Gouda is a Dutch cheese made of
cow milk. Tastes great on bread.TT

$4.99 per pound add to cart

Emmental
Emmental is a Swiss cheese made
from cow milk. Very nice with a
glass of wine.

<< < 1 2 3 4 5 >

Cheesr

Check out

Figure 3.17 Extracting common components into a Panel for reuse in multiple pages

76 CHAPTER 3 Building a cheesy Wicket application
from the front page that depends on this getter method—our base page (the Cheesr-
Page) provides the same method. Because our ShoppingCartPanel isn’t a subclass of
our CheesrPage, we need to implement this method ourselves.

 Now that we have a simple Java class that does nothing much, let’s add our markup
file. We create a ShoppingCartPanel.html file next to the Java class, and put the fol-
lowing in it:

<html>
<body>
<wicket:panel>
</wicket:panel>
</body>
</html>

In this markup file, you’ll notice the wicket:panel tags. These tags demarcate the
specific boundaries of the panel’s markup. Anything outside of these tags is discarded
when the component is rendered; anything inside these tags is processed by Wicket
and rendered into the final markup. Chapter 7 provides more information on these
and other Wicket tags. Now, when we move the markup specific to the shopping-cart
functionality (excluding the Check Out button) into this file and within the wicket:
panel tags, the markup file looks like that in listing 3.14.

<html>
<body>
<wicket:panel>
 <h3>Your selection</h3>
 <table>
 <tbody>
 <tr wicket:id="cart">
 <td wicket:id="name">Gouda</td>
 <td wicket:id="price">2.99</td>
 <td><a wicket:id="remove" href="#">remove</td>
 </tr>
 <wicket:remove>
 <tr>
 <td>Emmental</td>
 <td>$1.99</td>
 <td>remove</td>
 </tr>
 </wicket:remove>
 </tbody>
 <tfoot>
 <tr class="total">
 <th>Total</th>
 <td wicket:id="total">$1.99</td>
 <td> </td>
 </tr>
 </tfoot>
 </table>

Listing 3.14 ShoppingCartPanel.html: Markup for a reusable shopping cart

77Creating the checkout page
</wicket:panel>
</body>
</html>

When you compare this markup to the markup from the front page, you’ll see that every-
thing inside the cart div has been moved into our panel, except the Check Out button.
The button is specific to the front page and shouldn’t be included on our generic panel.

 A similar selection can be made with the Java code for our shopping-cart panel.
Recall the components: a list view that iterates through the cheese items in the cart,
two labels and a remove link for each item in the list, and a label for displaying the
total value. When we move the shopping cart code from the Index page into our
panel constructor, it looks like the following:

public ShoppingCartPanel(String id, Cart cart) {
 super(id);
 this.cart = cart;
 add(new ListView("cart", new PropertyModel(this, "cart.cheeses")) {
 @Override
 protected void populateItem(ListItem item) {
 Cheese cheese = (Cheese) item.getModelObject();
 item.add(new Label("name", cheese.getName()));
 item.add(new Label("price", "$" + cheese.getPrice()));

 item.add(removeLink("remove", item));
 }
 });
 add(new Label("total", new Model() {
 @Override
 public Object getObject() {
 NumberFormat nf = NumberFormat.getCurrencyInstance();
 return nf.format(getCart().getTotal());
 }
 }));
}

Because we added the getCart method to our panel, the code compiles immediately.
The only thing we have to do now is use the panel in our pages. First let’s adjust our
front page. The markup for the cart area of the front page is changed to this:

<div id="cart">
 <div wicket:id="shoppingcart"></div>
 <input type="button" wicket:id="checkout" value="Check out" />
</div>

We replace the relevant parts for the shopping cart with a div and a Wicket identifier.
This is where our panel will render its markup. Before that is possible, we need to
replace the old code in the page as well:

add(new PagingNavigator("navigator", listview));
add(new ShoppingCartPanel("shoppingcart", getCart()));
add(new Link("checkout")
{
 @Override
 public void onClick()

78 CHAPTER 3 Building a cheesy Wicket application
 {
 setResponsePage(new CheckOut());
 ...
});

Wasn’t reusing the shopping-cart panel easy? In this part of the page’s constructor, we
replace the code for the shopping-cart list view and the label for displaying the total
value with just one line of code: a call to our panel’s constructor.

 We’re now ready to test our new panel. As you can see in your browser, the front
page looks the same. We’ll leave adding the shopping cart to the checkout page as an
exercise for you.

3.4 Summary
A cheesy web shop is probably not the first thing that comes to your mind when you want
to build the next Web 2.0 killer app. It is, however, a great way to see in action the differ-
ent facets of developing a web application using any new technology such as Wicket.

 Using the concepts introduced in chapter 2, we created the Application class that
functions as our in-memory data store. To store customers’ shopping-cart informa-
tion, we created our own custom Session with the cart as an attribute. The minimum
scaffolding that you need to build for any Wicket web application includes the Appli-
cation class and a home page. A real-life application would of course have more
pages and panels with the corresponding Java code and markup.

 We used a simple web design to create mock HTML files for our pages. Using these
files, we created our Wicket pages step by step: first, we presented a list of cheeses. We
showed how you can repeat a group of components using a ListView. While building
our shopping cart, we ran into a small bug: the total price field didn’t update as we
added more cheese to our cart. We solved the problem by giving the total price label a
model that dynamically calculates the total amount on each render of the page. You
learned how to control the visibility of components: in our case, the Check Out but-
ton is hidden until something is added to the shopping cart.

 While building the checkout page, we introduced you to an important means of
interacting with customers: form processing. We glanced at the way forms are pro-
cessed, and we added validation and feedback to our checkout form. Using a Property-
Model, we were able to update the billing address with the user input when the form
was successfully submitted.

 We introduced the Panel component as a way to quickly create your own custom
components. We extracted the shopping-cart code and markup from the front page
and integrated it in our own ShoppingCartPanel. This opened up the opportunity to
reuse the shopping cart on both the front page and the checkout page, while having
only one implementation.

 This chapter covered a lot of material and a variety of topics in a relatively short
time. In the coming chapters, we’ll expand and deepen the knowledge and experi-
ence you’ve gained in this chapter, starting with one of the most basic and important
concepts: models.

Part 2

Ingredients for your
Wicket applications

Now that you have a high-level understanding of Wicket, we’re ready to
dive into the details. In this part of the book, you’ll learn the components, mod-
els, and behaviors that are available to you and how to put them to good use.
Armed with this knowledge, you’ll be ready to learn any new Wicket component
within minutes.

 Before we begin exploring components, chapter 4 discusses models. Models
are the glue between the Wicket components and your domain model. As such,
they’re an important part of using Wicket.

 Chapter 5 introduces components for displaying text and navigating to other
websites and to pages in your application, links that are able to respond to user
actions, and components that repeat their markup. The chapter ends with ways
you can manipulate your components: modifying their visibility and manipulat-
ing their markup.

 Processing form input is covered in chapter 6, together with validation and
providing feedback to your users.

 Creating and using components is one thing; combining them into reusable
chunks that can act as a composite component is another. Chapter 7 explores
grouping components and creating maintainable and consistent layouts using
panels or markup inheritance.

Understanding models
With all those cheese stores sprouting on the web, soon we’ll be able to buy lots of
cheese online. And our business plan wouldn’t be complete without a way to use
that cheese. Cheese features as a main ingredient in many recipes, especially Italian
recipes. Lasagna is not only a great Italian dish featuring heaps of cheese, it’s also
suitable as a metaphor for software: a lasagna gets better as you add more layers—
but only to a point. (Spaghetti is also a great Italian dish that’s improved by the
addition of cheese, but somehow we’re reluctant to use it as a metaphor for build-
ing great software.)

 In the previous chapters, we’ve given you a grand overview of the Wicket
framework. We introduced it and used it to build a simple online cheese store.
Basically, we’ve shown you what a lasagna is, so you can get a taste for it quickly.

In this chapter:
■ Introducing models
■ Using property models to save code
■ Using detachable models to keep your

data fresh
■ Nesting models to make the most of property

and detachable models
81

82 CHAPTER 4 Understanding models
But knowing what a lasagna is and how it tastes isn’t enough to create your own lasa-
gna. You need to know which ingredients are required and when and how to apply
them. The next few chapters will tell you about the ingredients for cooking your
own Wicket application. By the time we’re finished, you’ll be able to roll your own
lasagna noodles and cook your own tomato sauce instead of buying them from the
local supermarket.

 The structure of the coming chapters is such that you can read them individually—
learning about ingredients for your applications—or in sequence. You can skip this
chapter and read about components, and then come back to models. That said, we
think that learning about models is important to get the most out of Wicket, and we
encourage you to read this chapter first.

 This chapter will discuss Wicket models. We discussed them in chapter 2, and you
saw them in various examples in the first part of this book. But this time, we’ll go into
detail. Let’s first recap what models are and why you should care about them.

4.1 What are models?
Remember that we talked about the Model View Controller (MVC) pattern in chapter 2?
You learned that Wicket components represent the View and Controller in this pat-
tern, and your domain objects represent the Model role. Figure 4.1 (adapted from
chapter 2) shows how the MVC pattern is implemented in Wicket.

 Taking the lasagna ingredients metaphor further, you can think of Wicket models
as the lasagna noodles. They separate your domain layer (customer, cheese, cart) from
things in the view layer (text field, page, label, form) but also bind them together to
make a cohesive and neatly layered structure.

 Wicket models allow the components to retrieve their data when they need to ren-
der their contents, and to convert and store user input when some event is received.
From the perspective of a component, Wicket models fulfill the role of the Model in
the MVC pattern.

 Why are Wicket models so important that we dedicate a full chapter to them?
Models are arguably the most crucial part of Wicket to understand because they can

Controller

View

TextField

Locator

gets

Model

Cheese
cheese.age

gets

sets
Name Gouda

Age 3 months

OK

Cheese Store

receives

renders

sets

IModel

Figure 4.1 The Model-View-Controller pattern as it’s implemented by Wicket. The component
implements the roles of the Controller and View, and the Wicket model plays the role of the Model.

83What are models?
significantly affect your application’s performance and memory requirements. You’ll
see how you can control this to your advantage when we discuss detachable models
(section 4.3).

 The choice of models also makes a huge difference in the number of lines of code
you have to write. We all like to type less, so being able to write less code is a great ben-
efit. Cutting down on code also makes reading the code easier, thus improving the
code’s maintainability.

 Because Wicket models mediate between the view and domain layer, they enable
you to apply transformations on your data before you display it, or before you accept
user input and propagate it to your domain layer. Although Wicket provides a full-
fledged localization and conversion mechanism for general use, it’s often handy to
quickly apply a conversion at a local level, as we did when we displayed the prices of
cheeses in chapter 3.

 Finally, models are important because Wicket components are tightly bound to
them (at the level of the Java class hierarchy). The class diagram in figure 4.2 indicates
that all components have a model property. Not all components do something with
their model: several components work fine with no model value.

 Figure 4.2 shows the IModel interface. The interface publishes two methods:

■ getObject returning the value of the model
■ setObject for setting the value of the model

From the point of view of the component, IModel acts as a bean property: it has a get-
ter and a setter. Depending on the model implementation, the value can be local and
self-contained within the model, or it can be looked up dynamically and come from a
domain object. The model implementation can be as flexible as you want and get the
domain object from a database, a web service, the session, or anywhere. The compo-
nent doesn’t know where the data is coming from or where it’s stored—it just needs to
be able to call getObject and setObject.

 Conversely, from our point of view, the model acts as the actual value of the com-
ponent. Instead of asking the component for its value, you ask the model; and
instead of setting the value on the component, you change the model value. As a user

getObject():Object
setObject(Object)

IModel

Label TextField Page

model

id
Component

Figure 4.2 A class diagram showing the relationship between Component and IModel. All
Wicket components are ultimately descendants of Component, and all Wicket models implement
the IModel interface.

84 CHAPTER 4 Understanding models
of the framework, as long as you have a reference to the model (or know where to
find it), you have access to the value associated with the component and can even
change it if required.

 An interface is nice, but without an implementation you can’t do much with it. It’s
possible to implement the interface yourself directly, but it’s better to use or extend
one of the standard Wicket models. In the following sections, we’ll show several stan-
dard implementations of the IModel interface.

4.2 A taste of the standard models
Wicket provides a number of useful model implementations out of the box. We’ll
cover only a subset of the provided models because going through all of them would
take a lot of space in this book. Fortunately, with the knowledge you gain from the dis-
cussed models, you should have no problem understanding those that remain.

 Out of the full set of models provided by Wicket, you’ll most likely use only those
listed in table 4.1. Your choices aren’t limited to this list, but it provides a good overview
of the available commonly used models. The list is ordered from a simple model that
serves as a storage container to a full-blown internationalization machine. In the follow-
ing sections, we’ll discuss all these models except ResourceModel and StringResource-
Model; we’ll discuss them in chapter 12, when we talk about internationalization.

We’ll discuss the models in the order they’re presented in table 4.1. Without further
ado, we’ll start with the simplest of all: Model.

4.2.1 Using the simple Model

You may not have realized it, but you’ve seen the simplest use of models already: in
every one of our examples that features a label displaying text. Every time we’ve writ-
ten code like this

Table 4.1 The most commonly used model classes provided by Wicket

Model Description

Model Simple model used to store static content, or used as a base class
for quick dynamic behavior.

PropertyModel Uses a property expression to dynamically access a property in
your domain objects.

CompoundPropertyModel Uses component identifiers as property expressions to bind compo-
nents to its domain object.

LoadableDetachableModel Abstract model for quickly creating detachable models.

ResourceModel Easy-to-use model for retrieving messages from resource bundles.

StringResourceModel Advanced model for retrieving messages from resource
bundle; supports property expressions and MessageFormat
substitutions.

85A taste of the standard models
...
new Label("firstname", customer.getFirstName());
new Label("lastname", customer.getLastName());
new Label("street", customer.getAddress().getStreet());
...

we’ve been doing this behind the scenes:

...
new Label("firstname", new Model(customer.getFirstName()));
new Label("lastname", new Model(customer.getLastName()));
new Label("street", new Model(customer.getAddress().getStreet()));
...

The Label component has a convenience constructor that wraps the passed-in text in
a model, as shown in the following code taken from the Label class:

public class Label extends WebComponent {
 public Label(String id, String text) {
 this(id, new Model(text));
 }
 public Label(String id, IModel model) {
 super(id, model);
 }
}

The label constructor takes the string and wraps it in a Model b before passing it to
the superconstructor c. This enables you to directly put strings into the label compo-
nents without having to wrap the objects yourself.

 Taking a closer look at the previous example, we see some issues in the code:

...
add(new Label("firstname", new Model(customer.getFirstName())));
add(new Label("lastname", new Model(customer.getLastName())));
add(new Label("street", new Model(customer.getAddress().getStreet())));
...

First, this approach only works for string properties, because there is only one conve-
nience constructor for a Label. This doesn’t pose a huge problem, but it can be
annoying when you have to display a date field. Converting a date field to a string isn’t
exactly rocket science, but it can be cumbersome, especially if you have to take local-
ization into account. Using Wicket’s property models and converters solves this prob-
lem because they hook directly into Wicket’s localization system.

 The second and potentially fatal issue is the possibility of null values. If the cus-
tomer object is null or the getAddress method returns null, we’ll present our user
with a NullPointerException, which isn’t a pretty sight. So, we have to check for
those values. If we were to embark on such a mission, the previous example would
look something like the following:

...
add(new Label("firstname", (cust==null) ? "" : cust.getFirstName()));
add(new Label("lastname", (cust==null) ? "" : cust.getLastName()));

Wrap String
in Model

b

Alternate constructor
receiving IModelc

86 CHAPTER 4 Understanding models
add(new Label("street", (cust==null||cust.getAddress()==null)
 ? "" : cust.getAddress().getStreet());
...

All this null checking is cumbersome, error prone, and not fun. A framework should
help. In the next section, we’ll look at a way to remedy this situation using the Property-
Model. When you use Model as a storage facility for property values (wrapping the
value), you use it as a so-called static model. We touched on the subject of static versus
dynamic models in section 3.2.2 and promised a closer look. Because understanding
the differences between static and dynamic models will be important when we discuss
property and detachable models later, we’ll discuss this subject before we continue
with the models from table 4.1.
STATIC VS. DYNAMIC MODELS

To give you a better understanding of the differences between static and dynamic
models, we’ll create a page that shows the time in a label. Whenever the page is
refreshed, the clock shows the current time. The following markup and Java code cre-
ate a static clock and provide a link to refresh the page, thereby updating the time:

<html>
<body>
 Current time:

 refresh
</body>
</html>

public ClockPage extends WebPage {
 public ClockPage() {
 SimpleDateFormat df = new SimpleDateFormat("hh:mm:ss");
 String time = df.format(new Date());
 Model clock = new Model(time);
 add(new Label("clock", clock));
 add(new Link("refresh"){ public void onClick() {}});
 }
}

We create a model for our label and give it the current time b. Our refresh link c
does nothing in its onClick handler, causing Wicket to refresh the page.

 When you run this example and click the Refresh link, you’ll see that the clock
doesn’t update as expected. The static time in figure 4.3 shows the result of our clock
(identified by the Static Time field). Our current clock model is static.

 To make the clock show the current time on each page refresh, we have to update
the value of the clock model with each refresh. For instance, we could update the

Clock modelb
Link to
refresh
page

c

Static time: 23:13:19
Dynamic time: 23:13:19
Refresh

Static time: 23:13:19
Dynamic time: 23:14:01
Refresh

Figure 4.3

A clock as an example of the
difference between static and
dynamic labels. When the Refresh
link is clicked, only the dynamic
time is updated.

87A taste of the standard models
clock in the onClick handler of the Refresh link. But that approach will fall apart
when someone clicks Refresh in her browser (or presses F5, CTRL-R, or CMD-R)—
which causes the browser to request the current URL associated with the page—
because the link’s onClick handler isn’t triggered in that case.

 Instead of using a static (hard-coded) model to create the clock, we can make the
clock model dynamic. The idea is to update the value each time the getObject
method is called—or, more specifically, to override the getObject method. The fol-
lowing example shows how this works:

public ClockPage() {
 Model clock = new Model() {
 @Override
 public Object getObject() {
 SimpleDateFormat df = new SimpleDateFormat("hh:mm:ss");
 String time = df.format(new Date());
 return time;
 }
 };
 add(new Label("clock", clock));
 add(new Link("refresh"){ public void onClick() {}});
}

Instead of creating a new Model and providing it with the current date, we now create
an anonymous subclass of Model and override the getObject method. The getObject
method returns a fresh date each time it’s called—and this call occurs whenever the
component is rendered. This way, we always display the up-to-date time, and in this
sense the model is dynamic. The Dynamic Time field in figure 4.3 shows the results of
our dynamic clock before and after clicking Refresh.

 Figure 4.4 summarizes the differences between static and dynamic models. With a
static model, you are responsible for keeping the model in sync with the domain
objects. This isn’t a problem per se, but it’s one of those things that can keep you busy
before you’ve had your second cup of coffee for the day, leaving you wondering why

Component
Static
Model

gets

Cheese
cheese.agegets

sets

sets

you

gets

sets

Component
Dynamic

Model

gets

Cheese
cheese.age

gets

sets

sets

Figure 4.4 The difference between static and dynamic models: with static models, you’re
responsible for keeping the domain objects in sync with your model.

88 CHAPTER 4 Understanding models
the page doesn’t show the updated value of your domain object. Dynamic models can
get access to updated values from your domain objects all by themselves, saving you
the effort of keeping them in sync.

 The fact that the Model class typically behaves in a static manner isn’t the only
thing to notice. Because a static Model stores its value, the value must be serializable.
There is a good reason for this requirement.
SERIALIZING MODELS

Wicket components keep a reference to their associated model. At the end of the
request, after the markup has been sent to the browser, Wicket stores the page, com-
ponent hierarchy, and associated models (the state) in the page store. Depending on
which type of store is configured, it can go to disk, to a database, or into the HTTP ses-
sion. Most, if not all, page-store implementations use serialization to store the state.

Because components and their associated models are serialized, objects stored in
models need to implement the Serializable interface as well; otherwise the page
and components can’t be stored in the page store. You’ll notice these errors as java.
io.NotSerializableExceptions in your console or server log.

 At best, users won’t notice anything when such serialization errors happen. In most
application setups, the only time a user may run into a problem is when he uses
the browser’s Back button and sees a Page Expired message. If Wicket tries to restore the
page from the page store but can’t find it (because it couldn’t be stored due to the Not-
SerializableException), Wicket shows a Page Expired message. In the worst case,
you can’t synchronize the state across the cluster, and your failover or load-balancing
strategy fails.

 Fortunately, there are ways to cope with situations where you have objects that
can’t be serialized, or when serialization has too big an impact on CPU and memory
usage. In this chapter, we’ll discuss several ways to overcome this limitation. As a final
sidetrack before we return to the models from table 4.1, we’ll look at how you can use
Model to overcome the serialization problem.

Serialization
Serialization is a way for Java to write objects to a stream. This streaming is typically
used either to store the state of an object or to transport the state to another pro-
cess. Java has built-in support for serialization and uses the marker interface java.
io.Serializable as a way to identify objects that support serialization.

In web applications, serialization is typically used to transfer objects between the var-
ious tiers—especially when they’re on separate JVMs, to synchronize session state
between nodes in a cluster or to preserve session state by storing it in case a server
goes down. In the latter case, the sessions can be restored when the server goes
live again, and customers can continue shopping.

89A taste of the standard models
WORKING AROUND THE SERIALIZATION PROBLEM USING MODEL

When your model value isn’t serializable and can’t be made serializable due to reasons
beyond your control, you need to find a way to make the components work with your
model value. Using Model as a generic storage facility for components is one way to
work around the serialization problem: all text that you need to display is ultimately a
String. But how does that work when you want to process user input and transfer the
values to your domain layer?

 We discuss form input in detail in chapter 6, but there is no harm in using a form
as an example of how you can use Model to work around the serialization issue. List-
ing 4.1 shows a quick way to create a form for receiving and processing user input.

public class MyForm extends Form {
 private TextField name;
 private TextField street;
 public MyForm(String id) {
 super(id);
 name = new TextField("name", new Model(""));
 street = new TextField("street", new Model(""));
 add(name);
 add(street);
 }

 protected void onSubmit() {
 Customer customer = new Customer();
 customer.setName((String)name.getModelObject());
 customer.getAddress().setStreet((String)street.getModelObject());
 // do something with/to the customer
 }
}

For capturing user input, we don’t use any specific object or the Customer object we
have—just a form with a couple of text fields b. Initially, the form displays empty fields.
When the user fills in the fields and submits the form, we retrieve the value of each field
in the onSubmit handler c and copy the values across to our customer object.

NOTE We use shorthand to retrieve the model value of the component: compo-
nent.getModelObject() is shorthand for component.getModel().get-
Object(). To retrieve the model value as a String, you can also use
component.getModelObjectAsString()

Using a simple Model is a nice way of building a quick form without much ceremony.
And overriding the getObject method on the model is a great (and quick) method
to get dynamic behavior in place. But it isn’t that great when your form is more com-
plex than, say, a login form with two input fields. In our day-to-day programming, we
don’t like this way of working with models and forms: it’s tedious and repetitive. It’s
an interaction-driven way of coding: you have to manually mediate between the com-
ponents and your model objects. In most cases, you’re working with existing domain

Listing 4.1 Using Model to store form values

Set initial
empty model

b

Retrieve
updated value

c

90 CHAPTER 4 Understanding models
objects such as a Customer object, so you already have the properties, and you’d like
the components to read from and write to these fields directly. This is also known as
form binding.

 Let’s return to the models from table 4.1 and see how you can use PropertyModels
to glue your components to your domain objects.

4.2.2 Using PropertyModels for dynamic models

As we showed in the previous section, manually binding the properties of your Java
objects to Wicket components can be laborious and error prone. In this section, we’ll
look at a special model that takes away the disadvantages of doing it yourself: the
PropertyModel class. We briefly discussed PropertyModel in chapters 1 and 3.

 PropertyModel uses a property expression to examine your object and retrieve or
set the value of the object’s field. These property expressions are simple in nature;
they look the same as if you were traversing your objects’ public Java fields. Table 4.2
shows some example expressions.

The expression is the second parameter of the property model constructor. One big
advantage of PropertyModel is it’s null-safe: it won’t throw an exception when one of
the expression components turns out to be null. In the case where a value is being
read, it returns an empty string when a null is encountered.

 When setting the value, PropertyModel tries to create objects using the default
constructor when possible. If this fails, a WicketRuntimeException is thrown.

NOTE The automatic procedure isn’t clairvoyant, and it can only instantiate
new objects of the type of the property itself. For instance, it isn’t possible
to autocreate a property with the type java.util.List<String>. How
would Wicket know which implementation of the List to create? Should
Wicket create an ArrayList<String> or a LinkedList<String>?

Remember the example with all the null checks? Here’s a reminder:

...
add(new Label("firstname", (cust==null) ? "" : cust.getFirstName()));
add(new Label("lastname", (cust==null) ? "" : cust.getLastName()));

Table 4.2 PropertyModel examples

Java public field expression PropertyModel equivalent

user.firstName new PropertyModel(user, "firstName")

user.lastName new PropertyModel(user, "lastName")

user.address.street new PropertyModel(user, "address.street")

user.address.zipcode new PropertyModel(user, "address.zipcode")

user.children[0].name new PropertyModel(user, "children[0].name")

91A taste of the standard models
add(new Label("street", (cust==null||cust.getAddress()==null)
 ? "" : cust.getAddress().getStreet());
...

Now, let’s see how this looks using property models:

...
add(new Label("firstname", new PropertyModel(customer, "firstName")));
add(new Label("lastname", new PropertyModel(customer, "lastName")));
add(new Label("street", new PropertyModel(customer,"address.street")));
...

This looks a lot cleaner, doesn’t it? Using property models offers a definite advantage.
Not only do they remove the need for null checks, they also make it much easier to
update your Java objects inside forms. You don’t have to query the form component
for a value and set it yourself on your domain objects: just bind your domain object to
the form component using a property model, and you’re done. Wicket takes care of the
rest. Let’s revisit the form example from listing 4.1 and alter it to use the property
model (see listing 4.2).

public class MyForm extends Form {
 public MyForm(String id) {
 super(id);

 Customer customer = new Customer();
 setModel(new Model(customer));

 add(new TextField("name",
 new PropertyModel(customer, "name")));

 add(new TextField("street",
 new PropertyModel(customer, "address.street")));
 }

 protected void onSubmit() {
 Customer customer = (Customer)getModelObject();
 String street = customer.getAddress().getStreet();
 // do something with the value of the street property
 }
}

In this example, we create the form and provide it with a new customer object. The
form text fields are bound to the customer object’s fields using property models.
When the form is submitted, the property models update the customer’s appropri-
ate fields.

 Now that you’ve seen that property models can clean up code considerably, let’s
look at the next model from table 4.1. CompoundPropertyModel will save you from
even more typing.

Listing 4.2 Using PropertyModels to store form values

Bind to
customer.name

Bind to
customer.

address.
street

Get customer
from form

92 CHAPTER 4 Understanding models
4.2.3 Saving code with CompoundPropertyModels

In everyday Wicket usage, we see a drive for consistency: when users create pages dis-
playing the properties of domain objects, the component identifiers typically are
equal to the property names that are displayed. For instance, when we display a per-
son object, we typically have label components with identifiers such as firstName,
lastName, street, zipcode, city, birthdate, ssn, and so forth. There is nothing
wrong with this approach, because it emphasizes the meaning of a component in the
markup file and in the Java file. Using cryptic names for component identifiers makes
understanding and debugging an application difficult.

 Early in the development of Wicket, we saw an opportunity to use this tendency to
name things the same. If we take the label example from the previous section, let’s see
how we can save more code:

...
add(new Label("firstname", new PropertyModel(customer, "firstName")));
add(new Label("lastname", new PropertyModel(customer, "lastName")));
add(new Label("street", new PropertyModel(customer, "address.street")));
...

In this example, the component identifiers are almost the same as the attributes of the
customer and the address objects. Let’s first align them to be identical:

...
add(new Label("firstName", new PropertyModel(customer, "firstName")));
add(new Label("lastName", new PropertyModel(customer, "lastName")));
add(new Label("address.street",
 new PropertyModel(customer, "address.street")));
...

This isn’t exactly rocket science, but we’re getting somewhere. The component identi-
fiers now perfectly match the property names of the customer object. Don’t forget to
rename the wicket:id attributes in your markup file as well!

Are property models the ideal son-in-law?
Property models do have some quirks. We mentioned the first issue: property models
can’t perform magic and will probably create wrongly typed objects when there are mul-
tiple candidate classes (for example, creating a Person instead of an Employee when
Employee extends Person) or even fail when no suitable class can be instantiated.

Another quirk is that the expressions aren’t safe when you’re refactoring. Imagine
that the customer’s address field is renamed homeAddress. This means the field,
getter, and setter must be renamed, along with all occurrences of them throughout
your application. However, your refactoring tool probably won’t notice the text inside
the property expression. Your mileage may vary, depending on how smart your refac-
toring tool is.

Finally, just as with the Model class, property models require the object that is used
as the root of the expression to be serializable.

93A taste of the standard models
 Next, the following example introduces the CompoundPropertyModel:

...
setModel(new CompoundPropertyModel(customer));
add(new Label("firstName"));
add(new Label("lastName"));
add(new Label("address.street"));
...

We first set the model of the parent component (typically a page, panel, or form) to a
CompoundPropertyModel that wraps our customer object b. Next, we remove the
explicit models for all label components c. When a component needs its model value
but doesn’t have a model assigned (such as the labels in our example), it traverses its
component hierarchy for a parent with a CompoundPropertyModel. The component then
uses its component identifier as the property expression on the CompoundProperty-
Model’s value for retrieving the property’s value to display.

 In this example, the first label retrieves the firstName property from the
customer object supplied by the CompoundPropertyModel. The second label retrieves
the lastName property from the customer; and the third label first gets the address
object from the customer and then gets the value of the street property from the
address object.

 Let’s revisit the form example and apply our knowledge of the CompoundProperty-
Model to it. We’ve taken the code from the form example in listing 4.2 and modified it
to use the CompoundPropertyModel; see listing 4.3.

public class MyForm extends Form {
 public MyForm(String id) {
 super(id, new CompoundPropertyModel(new Customer()));
 add(new TextField("firstName"));
 add(new TextField("address.street"));
 }

 protected void onSubmit() {
 Customer customer = (Customer)getModelObject();
 String street = customer.getAddress().getStreet();
 // do something with the value of the street property
 }
}

When you compare this example with the form example in the previous section, you
can see that the code in the form constructor is much cleaner. We now take advantage
of the fact that our component identifiers match the properties of our domain model.

 Let’s shine some light on what we refer to as inheritable models by examining how
this works with nested components. For instance, what if we have an extra container
component between the parent holding the CompoundPropertyModel and our compo-
nent looking for an inheritable model? Listing 4.4 illustrates this example: ask your-
self what is displayed by the label.

Listing 4.3 Using a CompoundPropertyModel to store form values

Set model
on parentbNo explicit

models
c

Set inheritable
model

Binds to
customer.address.street

94 CHAPTER 4 Understanding models
public class NestedExamplePage extends Page {
 public NestedExamplePage() {
 Customer customer = new Customer();
 customer.setAddress(new Address());
 customer.getAddress().setStreet("Penny Lane");

 setModel(new CompoundPropertyModel(customer));
 WebMarkupContainer parent = new WebMarkupContainer("address"));
 add(parent);
 parent.add(new Label("street");
 }
}

<html>
<body>
<address wicket:id="address">

</address>
</body>
</html>

Will this example display “Penny Lane” in your browser? You would think so: the
label with identifier street is a child of the container with the identifier address. If
you combined those component identifiers, you might expect the whole expression
to become address.street. But it doesn’t work this way. Instead, you’ll get an
exception explaining that a Customer doesn’t have a street property. Let’s see how
this works.

 Because the label doesn’t have a model of its own, it searches up the component
hierarchy until the first inheritable model is encountered. Its immediate parent com-
ponent (the WebMarkupContainer) doesn’t have an (inheritable) model, so that one is
skipped, and its parent (the page) is queried. This one has an inheritable model,
so the label now tries to resolve its identifier (street) against the customer. But
because the customer doesn’t have such a property, Wicket can’t do anything other
than throw an exception.

 You’re probably wondering how to fix this issue. Remember that the component
identifier is reused as a property expression. We need to change the label’s compo-
nent identifier to address.street, as illustrated in listing 4.5 (don’t forget to change
it in the markup as well).

public class NestedExamplePage extends Page {
 public NestedExamplePage() {
 Customer customer = new Customer();
 customer.setAddress(new Address());
 customer.getAddress().setStreet("Penny Lane");

 setModel(new CompoundPropertyModel(customer));
 WebMarkupContainer parent = new WebMarkupContainer("address"));

Listing 4.4 The effect of nested components on inheritable models

Listing 4.5 The effect of nested components on inheritable models

95A taste of the standard models
 add(parent);
 parent.add(new Label("address.street"));
 }
}

<html>
<body>
<address wicket:id="address">

</address>
</body>
</html>

This gets the expected “Penny Lane” result in your browser.
 In summary: each component without a model searches up its parent hierarchy for

an inheritable model. Once the model is found, the component uses its own identifier
as is for the property expression needed to query the model. Any other components
that lie between the component and the parent with the inheritable model don’t
make a difference.

 With all this praise, you may wonder whether the CompoundPropertyModel is the
mother of all models. Although we enjoy the clean code this model enables, some dis-
advantages remain.

 Just as with the PropertyModel, property expressions aren’t safe for refactoring.
And this time, the problem is bigger: the component identifiers are now the property
expressions, so you have to keep track of them in both your Java code and your
markup files. This isn’t the end of the world, but it’s something you should be aware
of. And with the advent of Wicket-aware plug-ins, this may become something the IDE
will take care of, instead of you.

 Even if someday IDE support for refactoring property expressions becomes avail-
able, how can you use the CompoundPropertyModel and provide an alternative prop-
erty expression when you can’t change the component’s identifier?
USING BIND FOR ALTERNATIVE BINDINGS

In the previous examples featuring the CompoundPropertyModel, we only used the
component identifier as the property expression. Sometimes you don’t have the abil-
ity to change the component’s identifier, but you do want to reuse the compound
model that was set on the page or form. The bind method of the CompoundProperty-
Model gives you the flexibility to add alternative bindings between components and
the model object.

 To illustrate this, look at the form example in listing 4.6. Assume for the moment
that for some reason we can’t modify the component identifier of the street
text field.

public class MyForm extends Form {
 public MyForm(String id) {
 super(id);

Listing 4.6 Using the bind method for more flexibility in component paths

Changed
component
identifier

96 CHAPTER 4 Understanding models
 CompoundPropertyModel model =
 new CompoundPropertyModel(new Customer()));
 setModel(model);

 add(new TextField("name"));
 add(new TextField("street", model.bind("address.street")));
 }

 protected void onSubmit() {
 Customer customer = (Customer)getModelObject();
 String street = customer.getAddress().getStreet();
 // do something with the value of the street property
 }
}

Because we can’t modify the component identifier of the street text field, we have to
bind the text field in a different way compared to our customer object’s address. This
is achieved by using the bind method on our CompoundPropertyModel b to bind the
text field to the customer’s address.street property.

 There remains one open issue with compound property models. Just as with Prop-
ertyModel, CompoundPropertyModel requires that the object it queries for the proper-
ties implement Serializable. There is a way to use property models (including the
compound models) to circumvent the serializability requirement. In the next section,
you’ll learn how you can use detachable models to avoid serializing your model values.

4.3 Keeping things small and fresh: detachable models
Lasagna is a nice dish, but it’s on the heavy side. If you look at Garfield, an anthropo-
morphic feline lasagna lover, you can see what eating loads of lasagna can do to you.
Wouldn’t it be great if there were an ingredient that allowed you to eat all the lasagna
you could manage, and still preserve your supermodel figure? In the real world of
béchamel sauce, salami, and cheese, it’s unfortunately an impossibility; but when we
cross the metaphor boundary, we have such an ingredient. Detachable models keep
your applications lean and mean, no matter how often you consume them.

 Let’s first look at what detaching is. After that, we’ll present a standard model that
takes care of most of the work related to detaching.

4.3.1 What is detaching?
At the end of each request to your application, when the response HTML has been
fully rendered to the client browser, Wicket invokes a detach sequence during which
all components and models that took part in the request have the option to clean up
any data they want to get rid of. This detaching is performed to minimize the in-mem-
ory state of the application and to leave out references to non-serializable objects.
When the time comes for the application state to be serialized on the server, fewer
objects must be converted, and objects that aren’t serializable aren’t encountered.

 To illustrate how detaching works, we’ll extend the Wicket Model class to create a
CheeseModel that retrieves Cheese objects from a database and discards them when
they’re no longer needed. Until now, we’ve discussed the getter and setter of the

Set model

Bind component
to address.street b

97Keeping things small and fresh: detachable models
Model class. But we’ve left one method out of our discussions: detach. The class dia-
gram in figure 4.5 shows that the Model class implements the IModel interface, which
in turn extends the IDetachable interface (note that we omitted the IDetachable
interface in previous diagrams for clarity).

 If you look at the IModel interface, you see that it exposes the getter and setter
methods to interact with Wicket components. The inherited interface IDetachable
adds detach as the third method in the contract between a component and the
model. The Model class implements the methods of these interfaces and has one field:
the value that is returned from getObject and modified with setObject.

 Let’s see what happens when a component needs data. Typically, a component
queries its model for data during rendering or when a request is targeted at the

Minimizing state
A major difference between traditional thick client development and web development
is the need to keep things scalable. When you build a Windows 32 (or Cocoa, GTK,
or QT) client application, you usually have a whole PC at your disposal. Sometimes a
user will file a bug report on your application’s memory consumption, but hey, we’re
in an age where memory is cheap and the days of 640 KB computers are long gone.
You can code your application to use 10 MB of memory and not worry. Not bad, con-
sidering that iTunes can easily take up 145 MB.

If you port your application to the web, what will happen when 100 users start using
it? Your memory requirements will shoot up to 1 GB! If your application is popular and
attracts thousands of users … you can see where this is going. Either you’ll have to
invest in a lot of hardware, or you’ll need to find a way to manage your application’s
memory requirements.

The total amount of available RAM isn’t the only limiting factor. When your application
runs in a cluster, the session state must be synchronized across the cluster. The
more state your application contains, the more information must be communicated.
Typically, this synchronization is done using—yes—serialization, and that’s an expen-
sive undertaking. Minimizing the amount of data that needs to be sent over the clus-
ter is usually a great way to remove a bottleneck in your architecture.

getObject()
setObject(Object)

IModel

detach()
IDetachable

value : Serializable
Model

Detaches model
after use. This is
generally used to
null out transient
references that
can be re-
attached later.

Figure 4.5 A class diagram of the Model class and the interfaces it implements

98 CHAPTER 4 Understanding models
component (for example, an onClick event for a link). Note that the getObject
method can be called multiple times during a request (especially when the model is
shared with multiple components). At the end of the request, when the response has
been sent to the client, Wicket calls detach on all components that have been used
during the request. Figure 4.6 shows a simplified sequence diagram of the interaction
between Wicket, a Label component, and a Model.

 If an exception occurs during the detach phase, Wicket logs the exception and
continues to detach the models. At this time, the response has already been sent to
the browser, so it isn’t possible to notify the user that anything went wrong (not that
your average Joe is interested in the failure of detaching your data).

 We previously discussed the issue that objects stored in models need to be serializ-
able. We also showed that using Model as a generic property for components is a solu-
tion to the serialization problem (see section 4.2.1). It turns out that detachable
models are also helpful in working around this issue.

4.3.2 Working around a serialization problem with detachable models

The cause of the serialization problem lies in the fact that models hold a reference to
the non-serializable value. If we could clean up that reference before serialization
occurred, and reconstitute the object when it was necessary again, we’d have an ele-
gant solution.

 To illustration this solution, let’s implement a detachable model that gets a Cheese
object. Assume for now that the Cheese class doesn’t implement the Serializable
interface, and we can’t change the Cheese class definition. So, we can’t hold a refer-
ence to a cheese, because doing so would result in serialization errors. Let’s also
assume that our Cheese objects are stored in a database and that they can be retrieved
on demand by using their unique identifier (primary key). The code in listing 4.7
shows a model that works around the fact that a Cheese object isn’t serializable.

Label Model

render getObject()

detach()detachModels()

request

Figure 4.6

A simplified sequence diagram
for processing a request. Wicket
asks the Label to render itself,
and the Label queries its model
for the data to render. After
rendering, Wicket asks the
component to release any data
that was temporarily cached
during the detach phase.

99Keeping things small and fresh: detachable models
public class CheeseModel extends Model {
 private Long id;

 private transient Cheese cheese;

 public CheeseModel() {
 }

 public CheeseModel(Cheese cheese) {
 setObject(cheese);
 }

 public CheeseModel(Long id) {
 this.id = id;
 }

 @Override
 public Object getObject() {
 if(cheese != null) return cheese;
 if(id == null) {
 cheese = new Cheese();
 } else {
 CheeseDao dao = ...
 cheese = dao.getCheese(id);
 }
 return cheese;
 }
 @Override
 public void setObject(Object object) {
 this. cheese = (Cheese)object;
 id = (cheese == null) ? null : cheese.getId();
 }
 @Override
 public void detach() {
 this. cheese = null;
 }
}

In this model, we keep the identifier of the cheese and a transient reference to our
Cheese object. When a component requests the cheese, our model has several
options. If no identifier is available, we create a new cheese and return it. If an identi-
fier is available, but the associated object isn’t retrieved yet, we get the cheese from the
DAO and store the results for subsequent calls. When the request has finished and
the component no longer needs the cheese, the call to detach nullifies our reference,
solving the serialization problem.

NOTE This model reloads the cheese from the database on each request (or
creates a new Cheese object). If you want to retain data across requests,
but you don’t want to persist it (yet), you should make the domain object
serializable or store the data in a different, serializable object as a tempo-
rary measure until you’re able to persist the data.

Listing 4.7 Detachable cheese model that works around serialization problems

Identify cheese
in database

Cache for
cheese

Use cached
instance

Cache new
cheese

Cache existing
cheese

Call at end
of request

100 CHAPTER 4 Understanding models
This isn’t a lot of code, but using this approach for a lot of different classes (one
project of ours has about 200 entity classes, and counting) is asking a lot of your key-
board. Fortunately, LoadableDetachableModel takes care of a lot of the things we just
presented in CheeseModel. Let’s look at where the grass is greener.

4.3.3 Using LoadableDetachableModel

LoadableDetachableModel makes it easy to work with detachable models. It’s mod-
eled after a common use case for detachable models. Let’s first look at how Loadable-
DetachableModel is used. In the next example, we’ll create a web page that displays a
list of cheeses. For the sake of brevity, we’ve kept the example simple and omitted the
retrieving from the database. Our page lists only the names of the cheeses:

public class ListCheesesPage extends WebPage {
 public ListCheesesPage() {
 IModel model = new LoadableDetachableModel() {
 @Override
 protected Object load() {
 CheeseDao dao = ...
 return dao.getCheeses();
 }
 };
 add(new ListView("cheeses", model) {
 protected void populateItem(ListItem item) {
 Cheese cheese = (Cheese)item.getModelObject();
 item.add(new Label("name", cheese.getName());
 ...
 }
 };
 }
}

<html>
<body>

<li wicket:id="cheeses">

</body>
</html>

LoadableDetachableModel b requires you to implement one method: load c. This
method should retrieve and return the object the model will hold: in our example, it
retrieves the list of cheeses d. LoadableDetachableModel keeps a transient reference to
our list and releases it when the model is detached. The getObject method returns the
transient object when the model is in the attached state. At the end of the request,
the model is detached: LoadableDetachableModel discards our list of cheeses.

 When a new request comes in, and the ListView needs the list of cheeses again, it
calls getObject on its model. The loadable detachable model notices it’s still in a
detached state and calls load to get the contents of the list again. The result of the
load call is cached for the remainder of the request until the model is detached again.

Get users from
databasec

List usersd

Required
subclass

b

101Keeping things small and fresh: detachable models
It’s also possible to initialize the model in an attached state: provide the object you
already have to the constructor, and the model uses that instance until it’s detached.
In the previous example, we didn’t have any state in our detached model—we
retrieved the full read-only list of cheeses on each load. Let’s look at how the model
works for a single object. Consider the following model class:

public class LoadableCheeseModel extends LoadableDetachableModel {
 private Long id;

 public LoadableCheeseModel(Cheese cheese) {
 super(cheese);
 id = cheese.getId();
 }

 public LoadableCheeseModel(Long id) {
 super();
 this.id = id;
 }

 protected Object load() {
 if(id == null) return new Cheese();

 CheeseDao dao = ...
 return dao.get(id);
 }
}

...
add(new Form("cheeseForm", new LoadableCheeseModel(user)) {
 ...
});

Detaching, performance, and caching
You’re probably wondering about the performance implications of going to the data-
base with each request to save memory. Storing the domain objects directly with the
components provides the best performance, but even so, this approach (in general)
isn’t preferred. We’ve discussed several problems with storing domain objects direct-
ly with components: the serialization issue (this costs CPU time, I/O time, and band-
width), and increased memory usage.

Each user session keeps a copy of the objects in the history. These copies can quick-
ly get out of date, especially when the user uses the Back button. With many users,
there will be many copies of the same object in memory. This is a waste of RAM that
could be used to serve more data to even more users.

We prefer to offload the caching of domain objects to the data tier. Using a cache
ensures that only one logical copy of an object is stored in memory. This way, you can
reduce your application’s memory footprint. A cache can be configured to use only a
limited amount of memory, thus freeing space for handling requests and making it
possible to accommodate more users.

Hold object
identifierb

Create
attached statec

Create new object
when id is unknown

d

Get object
from database

e

102 CHAPTER 4 Understanding models
In this example, we define a subclass of the LoadableDetachableModel that stores the
object identifier of the Cheese object b. The identifier is the only data stored (or seri-
alized) when this model is in a detached state, so it’s efficient in terms of memory
usage. The model’s constructor takes an existing Cheese object and uses it to initialize
in an attached state c. In this case, the model won’t use the load method until after
it’s detached. The load method returns a new Cheese object if there was no identifier
d or uses the identifier to retrieve the Cheese object e.

 If you need more control when the model is attached and detached, the Loadable-
DetachableModel provides the onAttach and onDetach methods, respectively, which
you can override. These methods are optional and are necessary only when you create
intricate models.

 In section 4.2, we discussed how property models require their values to be serializ-
able, and we said we’d provide a solution to that problem. Detachable models work
around the serialization issue by storing just enough information to recreate the non-
serializable object on demand. You’ve seen the advantages of using property models—
for example, they save you a lot of typing. How can you get the memory-saving bene-
fits of detachable models in those cases where you want to use property models? It
happens that many models, including property models, support nesting.

4.4 Nesting models for fun and profit
A Matryoshka doll consists of a set of dolls of decreasing sizes that can be placed inside
one another. You (or your parents or an aunt) probably have a collection stashed in a
cupboard, gathering dust. The nice thing about these dolls is that you can put one
inside another and not know that there is one inside. The dolls have no function
other than being decorative (and helping to move small colored pieces of paper
between tourists and merchants, thus making them both happier). How do Russian
dolls relate to Wicket models?

 Property models and detachable models solve different problems: property models
cut down on code size and generally make dynamic updates a walk in the park, and
detachable models solve the tricky part of minimizing memory usage and enable you
to use objects that aren’t serializable. Approaches such as combining their functional-
ity in Java would result in an explosion of the number of classes (imagine classes like
LoadableDetachableCompoundPropertyModel).

 Fortunately, some models allow you to nest a model, creating a chain of model
functionality. The outside world (for instance, a component) sees and works with only
the outermost model and remains oblivious to what is happening on the inside. The
outer model uses the inner, nested model as its source of data and applies its own spe-
cial functionality to that data before providing it to the outside world. The inner
model can contain another model, and so forth, stacking and combining their bene-
fits. Although the models don’t need to get smaller to be nested inside one another,
the outer model does need to be aware that it’s working with another model and not a
domain object.

103Nesting models for fun and profit
 To continue with the Matryoshka analogy, if you play with the dolls, you can open
one and see what’s inside. This is also possible with models that support nesting: they
implement the IChainingModel interface and provide access to the nested (or rather,
chained) model.

 Let’s see how nesting works with an example that puts a detachable model inside a
property model:

LoadableCheeseModel cheeseModel = new LoadableCheeseModel(cheeseId);
PropertyModel nameModel = new PropertyModel(cheeseModel, "name");
String name = (String)nameModel.getObject();
nameModel.detach();

In this example, we create a LoadableCheeseModel in a detached state by giving it the
object identifier of a cheese that exists in our database. The actual cheese isn’t loaded
at this point. Next, we create a PropertyModel that binds to our CheeseModel and
retrieves the name of the cheese. Obtaining the name by asking the property model
for its object b sets in motion a chain of actions, as illustrated in figure 4.7. The prop-
erty model in turn calls getObject on the cheese model, and the cheese model que-
ries the cheese DAO, which goes to the database and retrieves the Cheese object. The
cheese model returns the Cheese object to the property model, which now uses it to
ask for the name property. When we’ve finished using the data in the component, we
detach the models c; doing so discards the Cheese object.

 Note that not all models support nesting, nor is it natural for some to do so. The
LoadableDetachableModel, for example, is intended to retrieve an object (or a list of
objects) from a persistent data store, so it doesn’t make sense to nest another model

Attach nameModel
and cheeseModelbDetach nameModel

and cheeseModelc

PropertyModel LoadableCheeseModel CheeseDao

Cheese

load ()

create

getObject()

get(id)

getName()

detach()detach()

getObject()

Figure 4.7 Sequence diagram for retrieving the model value of a nested detachable model inside a
property model

104 CHAPTER 4 Understanding models
inside it. Property models, on the other hand, allow unlimited nesting, as demon-
strated in the next example:

Customer customer = new Customer();
customer.getAddress().setStreet("White Abbey Road");

PropertyModel addressModel = new PropertyModel(customer, "address");
PropertyModel street = new PropertyModel(addressModel, "street");

System.out.println("Street: " + street.getObject());

The output is, of course, “Street: White Abbey Road”. In this example, we nest one
property model inside another. The use of this trick isn’t limited to playing with mod-
els. Take, for instance, the form in listing 4.8.

public class CustomerForm extends Form {
 public CustomerForm(String id, IModel customer) {
 super(id, customer);
 add(new TextField("name", new PropertyModel(customer, "name")));
 add(new TextField("street",
 new PropertyModel(customer, "address.street")));
 }
 ...
}

In this example, we let the user of the CustomerForm provide the model type. This can
be a LoadableDetachableModel, a HibernateObjectModel, or a MyOwnCustomerModel.
The form doesn’t care what type the model is—it only cares that the model returns a
Customer object. In Wicket 1.3 (the version this example was written for), we don’t
have the luxury to provide a type parameter with the IModel interface, because the
framework is built to run in a Java 1.4 (or newer) environment. With newer versions of
Wicket, you’ll be able to specify that the IModel needs to provide a Customer, using
generics like IModel<Customer>.

 Being able to build chains of models opens up many different ways to assemble the
data needed for your components and pages. You can have one model focus on
retrieving your domain objects in an optimal way, using as little memory as possible,
and also have a compound property model that saves writing oodles of code. Chaining
these two models gives you the best of both worlds: minimal memory usage and up-to-
date data together with less code to write. You can have the lasagna and eat it, too.

4.5 Summary
In this chapter, you entered a new phase in learning about Wicket development. The
previous chapters followed a more introductory approach and touched on the various
subjects without going into much detail. From this point on, we’ll go into much more
detail about each subject.

 This chapter tackled one of the most challenging concepts you’ll encounter when
using Wicket: models. Models are a way to provide components with data to act on:

Listing 4.8 An example of using nested models in a form

105Summary
they bridge the gap between the components that make up your pages and your
domain objects. You learned that models can do a lot of things. They’re used to store
and retrieve data, to get data from a database, and to transform data coming from a
data source into something else.

 We discussed various standard models provided by Wicket. We started with the sim-
ple Model class and used it as a means to quickly set up a form. We discussed the differ-
ences between static and dynamic models and how to make Model more dynamic. You
learned the benefits and the downsides of property models. They can save code but
make refactoring complicated and require the associated data to be serializable.

 Using detachable models, you learned how to circumvent the serialization require-
ment and how to keep memory usage to a minimum. By using a LoadableDetachable-
Model to store only an object’s database key and retrieve and discard it with each
request, you can keep memory usage to a minimum and, as an added benefit, ensure
that the data being used in your model remains fresh.

 By nesting models, you can, for example, get the benefits of both property models
and detachable models. You learned how to nest a LoadableDetachableModel with a
CompoundPropertyModel.

 With Wicket models as noodles, you now have the means to create neatly layered
lasagna. The models from this chapter let you keep your domain objects decoupled
from user-interface code but still bind them to Wicket components, thus forming a
cohesive package.

 It’s time to look at more ingredients. The next chapter will discuss the basic com-
ponents that make a great base for your lasagna—umm, application.

Working with components:
labels, links, and repeaters
In the previous chapter, we started building our own lasagna beginning with the
noodles that separate each layer. But we haven’t talked about the ingredients that
go in each layer. This chapter and the next two are divided into sections that dis-
cuss the ingredients that make up your pages: components. There are lots of com-
ponents, so we’ve divided them into categories based on their usage. Table 5.1
provides an overview of these categories and some components that fall into each.

 This list may seem short, but that’s because we’re saving some components for
the next chapter when we talk about forms. And if we listed all the components—
well, the table would be too long.

 Before we start with our first category, we’ll first briefly reacquaint you with
Wicket components.

In this chapter:
■ Components for displaying text
■ Navigating or responding to user actions with

link components
■ Repeating markup and components

using repeaters
■ Creating conditional markup by modifying the

visibility of components
106

107What are components?
5.1 What are components?
When the web began, using it was a novel but boring experience. All pages consisted
of static text and links between the documents. It was like a giant collection of linked

Table 5.1 Categories (use cases) and their corresponding components

Component Description

Displaying text

Label Displays text, numbers, dates, and so forth.

MultiLineLabel Displays multiline text and handles whitespace correctly in a browser.

VelocityPanel Uses the Velocity templating engine to render text.

<wicket:message> Markup tag for displaying text from resource bundles (see chapter 12).

Navigating using links

ExternalLink Links to external URIs.

BookmarkablePageLink Links to internal pages; can be stored by users for future reference.

<wicket:link> Creates BookmarkablePageLinks in markup automatically.

Responding to client actions

Link Receives an onClick server-side event.

AjaxLink Similar to Link, but sends a request using Ajax.

AjaxFallbackLink Uses Ajax when JavaScript and Ajax are available; falls back to normal
Link behavior otherwise.

Repeating markup

RepeatingView Low-level repeater that repeats markup for the components added.

RefreshingView Refreshes its contents on each request.

ListView Higher-level repeater that repeats markup for each item in the
model list.

DataView Repeater that is designed to work with database queries.

DataTable Flexible database driven table that promotes the use of toolbars
and columns.

Processing and validating user input (chapter 6)

Grouping components (chapter 7)

WebMarkupContainer No-op component that groups components or modifies tag attributes.

Panel Reusable grouping component with its own markup file.

Fragment Embedded panel that doesn’t have its own markup file.

Page Standard working unit in Wicket that groups all components and has its
own markup file.

108 CHAPTER 5 Working with components: labels, links, and repeaters
Word documents. It wasn’t long before people started to add dynamic content to their
pages. This dynamic content ranged from fields coming from database tables, to full
articles from content-management systems, to fields from patients’ medical records,
to videos of Chinese guys imitating popular music videos, and much more.

 In Wicket applications, components provide the dynamic content. For example, a
component may render a patient’s name, birth date, illnesses, or date of last visit.
Another component may fill a drop-down box with available movies, let you select a
movie, and store the selected value in a theater’s reservation system. This list of
dynamic content examples could go on indefinitely.

 In chapter 2, we introduced the MVC pattern to show how components act as the
View and Controller and domain objects act as the Model (with the help of the previ-
ous chapter’s model classes). Figure 5.1 shows Wicket’s implementation of the MVC
pattern using components and models.

 As we discussed in chapter 2, components encapsulate the minimal behavior and
characteristics of Wicket widgets: for example, how they’re rendered, what events they
listen to, how models are managed, how authorization is enforced, and whether
they’re visible. To make a long list of responsibilities short, components display infor-
mation and possibly react to events. When and how they do so is up to the components.

 You also saw the component triad in chapter 2. A Wicket component needs three
things to function:

■ A Java class (the how)—Determines the component’s behavior and implements
its responsibilities.

■ A markup counterpart (the where)—Determines where the component displays
its dynamic content.

■ A model (the what)—Provides the data to the component. The component can
use the model to display information or use it when processing an action such
as the click of a link.

Each component is given an identifier in the Java code and has a counterpart in the
markup file with the same identifier. The location of the component’s markup coun-
terpart ultimately determines where the component is rendered in the final markup

Controller

View

Component

Locator

gets

Model

Cheese
cheese.age

gets

sets
Name Gouda

Age 3 months

OK

Cheese Store
receives

renders

sets

IModel

Figure 5.1 The Model-View-Controller pattern as it’s implemented by Wicket, with the component
fulfilling the role of both Controller and View

109Displaying text with label components
that is sent to the browser. The component hierarchy is constructed by adding compo-
nents to a page and to other components. For instance, in most of our examples,
we’ve added labels and forms to the page, and form fields to the form, creating a hier-
archy of parents and children. As you learned in chapter 2, the tree structure of the
component hierarchy and the identifier hierarchy in the markup must match.

 This summarizes the concept of a component in an abstract way. Let’s get started
with more tangible components to solve your everyday needs. One of the basic things
web applications need to do is display text, so we’ll start with that.

5.2 Displaying text with label components
As we mentioned earlier, the first incarnation of the web was static: all pages consisted
of hard-coded text, with links between the pages. Soon people wanted to show
dynamic text on their websites, such as visitor counters, the current date, news head-
lines, product data from a database, and so forth. In this section, you’ll see different
components that display dynamic text. The first component is one you’ve seen already
on numerous occasions: the Label.

5.2.1 Using the Label component to render text

The Label component is used to display text. The text can be anything: for example,
the name of a customer, a description of a cheese, the weight of a cheese, the number
of items in a shopping cart, or a fully marked up Wikipedia article. In previous chap-
ters, we’ve presented many examples that show the Label in action. For instance, the
front page of our cheese store contains many labels. Figure 5.2 identifies the labels on
a screenshot of that page.

Label components

Figure 5.2 Identifying Label components on the front page of chapter 3’s cheese store. Each
label is responsible for displaying a single aspect: the cheese’s name, description, or price.

110 CHAPTER 5 Working with components: labels, links, and repeaters
As a reminder of how labels work in code, let’s return to the Hello World! example
shown in listing 5.1.

<!-- markup file -->
text goes here

// java code
add(new Label("message", "Hello, World!"));

<!-- final rendered markup -->
Hello, World!

The Label component is bound to the span tags in our markup using the component
identifier message. The contents of the span tags are replaced by the text we provide in
the Java code, as evidenced by the final markup. In this example, we provide the label
directly with a string, but this isn’t the only way for a label to obtain the text to display.
You can pass in any model implementation—for example, you could use the com-
pound property model, which would use the component identifier to give the label
access to the display text (see also section 4.2.3). When the model value isn’t a String,
Wicket converts the model value to a String using the registered converters. When no
converter can be found, Wicket calls the model value’s toString method to convert
the model value to a String. See chapter 12 for more information on converters.

 In our examples, we often use the span tag to create a label, but labels aren’t lim-
ited to the span tag. You can add a label to almost any tag in your markup. The only
caveat is that the markup must have a content body. For instance, it doesn’t make
much sense to attach a Label component to img tags. Listing 5.2 shows some possible
markup choices for a Label component.

<!-- markup -->
Will be replaced
<td wicket:id="label2">[name]</td>
<h1 wicket:id="label3">title goes here</h1>
Name:
<div wicket:id="label4"></div>

/* Java code */
add(new Label("label1", "Hello, World!"));
add(new Label("label2", new PropertyModel(person, "name")));
add(new Label("label3", "Wicket in Action"));
add(new Label("name"));
add(new Label("label4", new ResourceModel("key", "default")));

<!-- output -->
Hello, World!
<td wicket:id="label2">John Doe</td>
<h1 wicket:id="label3">title goes here</h1>
Name: Parmesan
<div wicket:id="label4">standaard waarde</div>

Listing 5.1 Rendering the Hello World! example with a Label component

Listing 5.2 Examples of markup with a Label component attached

Internationalized
text

Dutch for
“default”

111Displaying text with label components
As you can see, the label works the same way even when attached to different markup
tags. The Label component replaces anything inside it with the text that comes from
the provided model (in this example, the provided strings). Listing 5.2 also shows sev-
eral ways to provide the text to display: a static string, a property model, a compound
property model, and a resource model (used to provide internationalized messages,
as discussed in chapter 12).

NOTE You can nest example markup for preview purposes within a label’s tags,
but you can’t nest Wicket components inside a label. If you do, the result
will be an exception. At render time, the label replaces everything
between the start and end tags, including any markup if present.

A Label component is great for displaying short amounts of text such as names,
weights, dates, and prices. But how do you display longer text, such as descriptions,
and preserve multiple lines?

5.2.2 Displaying multiple lines using a MultiLineLabel

Often, you’ll get text from a user (for instance, through a comment form on a blog)
that contains basic formatting created using newlines. As you may know, HTML
ignores most whitespace if it isn’t contained in <pre> tags. How can you display strings
that aren’t HTML but that contain basic formatting in the form of newline characters?
Listing 5.3 shows a page that exhibits this problem.

/* java code */
public MyPage extends Webpage {
 public MyPage() {
 add(new Label("message", "Hello,\nWorld!\nI'm super!"));
 }
}

<!-- markup -->
<html>
<body>
Text goes here
</body>
</html>

In this example, we want to display the text “Hello, World! I’m super!” across three
lines. If you run the example, you’ll see that this doesn’t happen. Your browser refor-
mats the text and puts it all on the same line. To solve this problem, Wicket has a special
Label component that takes into account multiple text lines: the MultiLineLabel.

 The MultiLineLabel inserts line breaks (br tags) for single-line breaks in your text
and paragraph tags (p tags) for multiline breaks in your text. In our example, the
code renders as follows:

<p>Hello,
World!
I’m super!
</p>

Listing 5.3 Displaying a preformatted message that spans multiple lines

112 CHAPTER 5 Working with components: labels, links, and repeaters
This gives the desired result, as shown in figure 5.3, which displays the output of a nor-
mal label and a multiline label next to each other.

 Now that you know how to render plain text containing basic formatting, how can
you render text that needs to be bold or italic, or a heading inside a label?

5.2.3 Displaying formatted text using labels

Sometimes, you want to display more than just the name of a cheese. You may want to
stress part of your message or display user-generated formatting. Because you’re work-
ing in a web environment, and the lingua franca for controlling formatting is HTML,
it’s logical to provide the label with HTML markup inside the text.

 What happens when you give the label some markup in its model? Look at the fol-
lowing snippet:

<!-- markup -->

/* Java code */
add(new Label("markup", "<h1>Hello!</h1>"));

Using this code, we expect the text “Hello!” to be displayed in big, bold letters. But this
isn’t the case. Figure 5.4 shows the undesired result together with the desired output.

 The left screenshot isn’t what we expect: instead of big, bold text, we get the cryp-
tic markup we put in the label. The tags we put into the label have been escaped, pre-
senting us with the verbatim contents instead of the properly formatted value. In the
following, you can see how Wicket has rendered the contents in the final markup:

<h1>Hello!</h1>

Wicket has escaped the < and > characters and replaced them with their corresponding
XML entities (< and > respectively). By setting a flag on the component, you can
tell Wicket to render the contents without escaping. Look at the next Java snippet:

add(new Label("markup", "<h1>Hello!</h1>").setEscapeModelStrings(false));

Hello, World! I'm super! Hello,
World!
I'm super!

using a Label using a MultiLineLabel

Figure 5.3

Comparing the output of a normal
label and a multiline label when
using Java formatting inside the
model text

<h1>Hello!</h1> Hello!

with escaping markup without escaping markup

Figure 5.4

Label with and without
escaped markup. Using
setEscapeModelStrings,
you can tell Wicket not to
escape markup tags and to
display formatted HTML the
way it was intended.

113Navigating using links
The call to setEscapeModelStrings tells Wicket not to escape the contents of the pro-
vided string, and to render the contents into the resulting markup. This does the
trick, as you can see in the right screenshot in figure 5.4. Note that this setting is avail-
able on all Wicket components, but it’s primarily useful on labels.

Displaying text on the web is rewarding in its own, but if your users are unable to navi-
gate to the page that contains the text, it’s virtually useless. Let’s return to table 5.1
and continue with the next category of components: navigational links.

5.3 Navigating using links
Taking a stroll down memory lane, the internet was once called the information super-
highway (yes, we’re that old). If we use that term, it isn’t hard to imagine that the exits
are formed by links. On a normal highway, an exit takes you off the highway to places
where you stop to do things: shop, work, relax, or see a movie. The same holds for
links: they may take users to our cheese store, where they can buy cheese for lasagna;
to an administrative system that will help them work; or to YouTube for some Friday
afternoon entertainment.

 Wicket provides several abstractions for links. There are links suited to perform an
action (and navigate afterward), links that navigate only to another part of an applica-
tion, and links that navigate to another website. In this section, we’ll take a closer look at
the navigation links listed in table 5.1. Let’s first discuss static links to external websites.

5.3.1 Linking to documents using static links

In plain markup, you typically link between pages using the <a href> tag. This tag con-
tains the URL of the document you’re linking to. For instance, <a href="http://
wicket.apache.org">Wicket is an example of a link to the Wicket home page.
You can use this type of link directly in your Wicket pages.

Beware of script-injection attacks
When you give your users the ability to enter HTML markup into your application,
through either a text input field or a text area, and you render this directly back to the
client, the users can play dirty tricks by injecting JavaScript into your pages. Such
tricks can range from opening pages on other websites (spam) to more dangerous
exploits like key loggers recording credit-card information and passwords. Most
browsers prevent cross-site scripting (XSS), but you can’t be careful enough when it
comes to security.

As an example, if we change the model of our label to the following, and escaping is
turned off, clicking the message results in a popup:

"<h1 onclick='alert(\"clicked!\");'>Click me</h1>"

Be careful when you open up this possibility, and filter the markup to remove any
scripting before you store it.

114 CHAPTER 5 Working with components: labels, links, and repeaters
 Static links can be useful in web applications or websites. Perhaps you want to link
to the Wicket website by displaying a Powered by Wicket logo, or provide a link to your
corporate intranet site or another web application. As long as the link is static, in the
sense that you don’t need to retrieve the link from a database or construct it using Java
code, you can add the link directly to the markup of your page. Let’s see how that
looks on our Hello World! page by adding a Powered by Wicket link. Listing 5.4 shows
the corresponding markup.

<!-- markup -->
<html>
<body>
<h1 wicket:id="message">[text goes here]</h1>
Powered by Wicket
</body>
</html>

/* Java code */
public HelloWorldPage extends WebPage {
 public HelloWorldPage() {
 add(new Label("message", "Hello, World!"));
 }
}

As you can see, the <a href> tag doesn’t contain a Wicket component identifier, and
it’s seen by Wicket as static markup. The Java code for this page only adds the Label
component: there is no Java counterpart for the static link.

 This is fine when you know the exact URL up front and the URL remains static, but
how can you create links to an external site when the URL comes from an external
data source (such as a database)?

5.3.2 Using ExternalLink to render links programmatically
To enable our plan for world cheese domination, wouldn’t it be nice to link to recipes
using each cheese? This would definitely increase sales, because our customers could
immediately see ways to use a particular cheese. Say we find a partner that already has
a recipe website with many recipes containing cheese. All we need to do is link our
cheeses to the recipes. We add a recipe concept to our domain model, including a
name and the URL to the recipe.

 Now that we have a way to store a URL to the recipe, how can we render it into our
page? Using the ExternalLink component, we can link to any URL on the web and
have the URL come from anywhere. The next snippet shows how to link to a recipe
that uses a cheese:

add(new ExternalLink("link", recipe.getUrl(), recipe.getName()));

In this example, we generate the URL and the contents of the link. For a good lasagna
recipe, this would generate the following:

lasagna

Listing 5.4 An example of a static link in the markup of a Wicket page

115Navigating using links
If you don’t provide contents for the link, it keeps what is in the original markup
template. It’s also possible to use models with the external link for both the URL
and contents:

add(new ExternalLink("link", new PropertyModel(recipe, "link"),
 new PropertyModel(recipe, "name"));

The external link is an easy way to create links to external content from within your
Java code. Static links are handy to link to externally available resources, but how do
you link to pages inside your Wicket application? Several possibilities exist for navigat-
ing between pages, including BookmarkablePageLinks.

5.3.3 Linking to Wicket pages with BookmarkablePageLinks

Imagine a highway on which you can create your own exits—exits that take you directly
to your destination, without detours. The links you’ve seen thus far give you access to
predefined locations, usually outside your control. With the BookmarkablePageLink
component, you can give others direct access to locations inside your application.

 When you create a BookmarkablePageLink to point to a Wicket page, it renders a
link that enables Wicket to create the page later, without having any previous knowl-
edge of where the user has been. The link can be shared with other people and can be
retrieved at any time, even when the user hasn’t visited the site in a long time. For
example, your home page, the details page for a cheese, a blog entry, and a news arti-
cle are all prime examples of good pages to link to. Basically, anything your customers
want to share with one another—typically by sending a link over email—or want to
remember for future reference is a good candidate to be accessed through a Book-
markablePageLink.

As an example, we’ll add a details link to each cheese on the front page. The link will
point to a details page for each cheese; this page will show information about the
linked cheese. Using this example, we’ll show the various ways of creating links to
Wicket pages.

Generating a link to a page for use in email
When you want to send a user a link to a page in your application, you can use the
urlFor method to generate the URL to the page. The next snippet generates a link
to a registration confirmation page:

String url = urlFor(ConfirmRegistrationPage.class,
 new PageParameters("id=" + registrationId));
String msg = "Click on the following link:\n\n"
 + url + "\n\nto confirm your registration.";

The urlFor method is also used to generate URLs to event listeners or resource lis-
teners. It’s a method of the Component class, so you can use it almost anywhere.

116 CHAPTER 5 Working with components: labels, links, and repeaters
 We need a link tag in our markup file and a corresponding Bookmarkable-
PageLink component in our Java file. Listing 5.5 shows how to create a bookmarkable
link to the details page.

<!-- markup -->
more information

/* java code */
add(new BookmarkablePageLink("link", CheeseDetailsPage.class));

The <a href> tag has an href attribute containing #. This is done to show a proper
link in the document when we preview it in the browser; Wicket will replace it with the
URL of the page the link is pointing to. The Java code adds the link to the component
hierarchy and tells Wicket to create the CheeseDetailsPage page when the link is
clicked. Figure 5.5 shows how our front page looks after we’ve added the More Infor-
mation link.

 Our current implementation of the link has one problem: we haven’t specified the
cheese for which we want to show details! When the cheese details page is created,
how do we know which cheese’s details should be shown? We need to provide the details
page with more information. The link generates a URL that contains all the informa-
tion needed to create the page. URLs can contain request parameters that are passed
to the page, so the page can react to that information. Wicket encapsulates those
request parameters in PageParameters.
ADDING PARAMETERS TO A BOOKMARKABLE PAGE LINK

First we need to consider what you can put into URL parameters. According to inter-
net standard RFC-1738, a URL may consist only of alphanumerics: 0-9, a-z, and A-Z. Spe-
cial characters and whitespace must be escaped. This means you have to convert Java
objects into string representations before you can use them as URL parameters.

 Given the URL’s limitations, we can’t simply put a cheese object into the URL. Even if
it were possible to pack all the details of the cheese into the URL, doing so wouldn’t be
appropriate, considering that the URL can be bookmarked and stored for a long time. If

Listing 5.5 Creating a bookmarkable link

Figure 5.5 Adding a bookmarkable link to the front page of our cheese store. It links to a
details page for each cheese. The screen on the right shows the details page after we
clicked the link.

117Navigating using links
someone bookmarks a cheese with a discount price of, say, $1 and then opens the book-
mark two months later when the price has returned to $2.50, that would be a bummer.
Plus, a malicious user could attempt to modify the URL and change the price directly.
Instead of storing the whole object into the URL, you can store a unique property based
on which you can reconstitute the object. The object identifier is a good candidate, as is a
more businesslike key such as a customer number or, in our case, the name of the cheese.

 Let’s assume we can load a cheese based on its name. We add the parameter to the
URL in the following code:

PageParameters pars = new PageParameters();
pars.add("name", cheese.getName());
add(new BookmarkablePageLink("link", CheeseDetailsPage.class, pars));

Because the parameters are stored and rendered as strings, you can only add string
values to the parameters. You can add as many parameters to the link as you want, as
long as you don’t exceed the maximum URL length (about 2,000 characters for Inter-
net Explorer and 4,000 for other browsers).

 Without any specific configuration, Wicket generates the URL shown in figure 5.6.

This is by many standards an ugly URL. It looks complicated, it’s long, and it shows
information we’d rather hide from our users, such as the package name. In chapter 14,
we’ll look at ways to generate prettier URLs.

 Now that we have the link side covered, what happens when someone clicks the link?
As you can see in figure 5.6, the class name of the page is contained within the URL.
Wicket tries to create that page. For this to work, the page needs to be bookmarkable.
GETTING YOUR PAGE TO WORK WITH BOOKMARKABLEPAGELINKS

A page is considered bookmarkable if

■ It has a constructor that has no arguments (also known as a default construc-
tor), or

■ It has a constructor that takes a PageParameters instance as the only argument

These are the only two constructors Wicket can invoke on its own.
 A page can have both constructors and additional constructors with other parame-

ters. But when called upon to instantiate a page, Wicket prefers the constructor with
PageParameters if it’s available. The next example shows a page with three construc-
tors where two fall into the bookmarkable category:

public class CheeseDetailsPage extends WebPage {
 public CheeseDetailsPage() {

?wicket:bookmarkablePage=%3Acom.cheesr.CheeseDetailsPage&name=gouda

class name for page request parameter

Figure 5.6 The URL as generated by the bookmarkable link. The URL contains all the information
needed to create the details page and retrieve the cheese object based on its name.

Bookmarkable
constructor

b

118 CHAPTER 5 Working with components: labels, links, and repeaters
 }
 public CheeseDetailsPage(PageParameters parameters) {
 }
 public CheeseDetailsPage(Cheese cheese) {
 }
}

In this example, Wicket doesn’t use the default constructor b, because Wicket always
prefers the constructor with PageParameters c. But the default constructor is still
useful inside your code, because it makes it (a bit) easier to create the page yourself.
As long as the page has either of these two constructors, it can be used successfully in
a bookmarkable link.

 If the page had only the constructor with a Cheese parameter d, it wouldn’t be
possible to reference it in a bookmarkable link—or, to be more precise, Wicket
wouldn’t know how to create a new instance of the page with only the Cheese con-
structor, and would generate an error. This is the case because Wicket can’t determine
which cheese needs to be passed in as a parameter. You can still use this constructor if
you know how to get a cheese instance based on the page parameters. Listing 5.6
shows how to parse PageParameters and use the type-safe constructor.

public class CheeseDetailsPage extends WebPage {
 // bookmarkable constructor
 public CheeseDetailsPage(PageParameters parameters) {
 super(parameters);
 Cheese cheese = null;
 if(parameters.containsKey("name") {
 String name = parameters.getString("name");
 CheeseDao dao = ...;
 cheese = dao.getCheeseByName(name);
 }
 createComponents(cheese);
 }
 // non-bookmarkable constructor
 public CheeseDetailsPage(Cheese cheese) {
 createComponents(cheese);
 }
 private void createComponents(Cheese cheese) {
 // do cheesy stuff with the cheese
 }
}

When the CheeseDetailsPage is created using the constructor with PageParameters
b we parse the parameters and retrieve the value for the parameter name c. We call
the createComponents method to create the component hierarchy. This method is
also called in our non-bookmarkable constructor d to avoid code duplication.

 We’ve covered a lot of ground and let many concepts and components pass by.
Let’s take a break and let Wicket do all the heavy lifting for us. All the links we’ve

Listing 5.6 Parsing page parameters to retrieve a Cheese object

Bookmarkable
preferred
constructorc

Non-bookmarkable
type-safe constructord

Bookmarkable
constructor

b

Retrieve
cheese
using name

c

Non-bookmarkable
type-safe constructor

d

119Navigating using links
discussed so far require you to add links in both the markup and the Java file. For sim-
ple links to pages and resources, it would be nice to automate this process.

5.3.4 Adding bookmarkable links automatically with wicket:link

Previously, we showed you how to create bookmarkable links to pages in your web
application. To make this work, you have to add the links to the markup and add a
BookmarkablePageLink component to the page class. If you have many pages that are
accessible through bookmarkable links, this is a lot of work to do by hand. The special
wicket:link tags in a markup file instruct Wicket to automatically create bookmark-
able link components for the links inside the tags.

 Let’s see how this works with auto-linking to two pages. First, look at the markup
file in the next example:

<html>
<body>
<wicket:link>

 Page1
 Page2

</wicket:link>
</body>
</html>

Wicket automatically creates components for these links when they point to existing
pages based on the value of the href attribute. In this example, Wicket auto-creates
two bookmarkable links—one to com.wia.package1.Page1 and the other to com.wia.
package2.Page2—when the current page is in package com.wia.

 Note that a link is rendered as disabled when it would point to the current page.
Figure 5.7 shows how this might look in your browser.

 You can also use this auto-link facility to add links to packaged resources such as
stylesheets and JavaScript files (you can learn more about this subject in chapter 9).

Parsing PageParameters
The PageParameters class lets you get converted parameters from the URL. For
example, PageParameters has a getInteger(key) method that looks up the key
in the URL and tries to convert its value to an integer. If this fails, it throws a con-
version error.

People like to modify the URLs in their browser bar, so you may get strange requests
to your pages. Wicket shows a default error page if it encounters such malice. To
show a friendlier page at a local level, you should surround the querying of the page
parameters with a try-catch block. In our example, we could show a page that pro-
poses, “Sorry we couldn’t find the cheese you were looking for, but how about this
Beenleigh Blue for just $10?”

Auto-link
block

Link to
com.wia.package1.Page1

Link to
com.wia.package2.Page2

120 CHAPTER 5 Working with components: labels, links, and repeaters
wicket:link saves manual labor: you don’t have to add the bookmarkable links your-
self. Note that wicket:link is not refactoring safe: when you move pages between
packages, you should modify the links inside the wicket:link section in your markup
as well. wicket:link is a convenience rather than an all encompassing solution to
your linking problems—especially when the links have to respond to user actions.

 Let’s continue with the next component category from table 5.1 and look at
responding to client actions.

5.4 Responding to client actions with a link
Links are useful for more than navigating the web and going from one page to
another. They also represent a way to perform an action when the user clicks a link.
For instance, the user could add one kilo of Parmesan cheese to a shopping cart or
select a course of action in an online text adventure.

 All the links we’ve discussed until now don’t provide a way to act on the event of
the link click. External links divert our users from our site, and bookmarkable links
don’t provide a context to work in: they create a page and render it to the client. They
don’t give you a way to do any processing in response to a user action. In contrast,
Wicket’s Link component provides a way to perform an action when a user clicks the
link; combined with the setResponsePage method, Link even allows you to travel to
another destination.

 In this section, we’ll look at two link implementations: a Link class that uses the old
Web 1.0–style request/response cycle, and an Ajax Link class that uses the hip Web
2.0–style request/response cycle that doesn’t refresh the entire web page. We’ll start
with the old-fashioned Link.

5.4.1 Using Link to respond to client actions

The Link component is an abstract class, requiring that you implement the onClick
method. The onClick event is called when the user clicks that link. In this event, you
can do a lot of things, such as saving an object to the database, deleting it from the
database, calculating a value, creating and returning a document (PDF, Excel, image,
and so forth), starting a background thread, sending an email message, or going to
another page.

 Let’s look a basic link example in which we navigate to a new page in the onClick
event. Listing 5.7 shows the markup and Java code.

• first page
• second page
• third page

• first page
• second page
• third page

Page1 Page2

Figure 5.7

Auto-linking in action. The link
to the current page is rendered
as disabled by replacing the link
tag with a span, and rendering
the text using an em-tag (this
is configurable).

121Responding to client actions with a link
<!-- markup file -->
<html>
<body>
click me
</body>
</html>

/* Java file */
public class MyPage extends WebPage {
 public MyPage() {
 add(new Link("link") {
 public void onClick() {
 // ... do something useful ...
 Page next = new SomeOtherPage();
 setResponsePage(next);
 }
 };
 }
}

Just as in the previous link examples, the markup is nothing special: an ordinary link
tag with a Wicket identifier. In the server-side onClick event, we create the new page
and instruct Wicket to respond using that page. Using this type of navigation gives us
full control over how the page is constructed. We can create a constructor for the
page with a Cheese object as parameter, as opposed to passing in an identifier using
PageParameters.

 A link component can also be attached to other tags than <a href>: images, spans,
table cells, and table rows; you can attach the link component to any tag that can have
a JavaScript onclick event. There is one caveat: the browser must have JavaScript
enabled for this to work, because the link behavior is implemented using a short Java-
Script snippet.

Don’t use hyperlinks to make deletions and changes
Automated clients such as search-engine bots typically harvest information by pars-
ing the documents they find on your website. They follow all links, regardless of
whether the link says START WORLD WAR 3 or My Dear Pony Poem.

You may have heard the urban legend of a website owner who had a fully filled Wiki
published on the internet, including a Delete link in each article. When the Google bot
passed by to index this website, it faithfully followed all links, including the Delete
links. Rumor has it that the owner got the contents of the website back using a dump
from the Google index.

This story serves as a warning for all web application developers, including those who
choose to use Wicket. Using normal hyperlinks to delete items or modify the contents
of your database on a public part of your website is dangerous and could lead to
unwanted results.

Listing 5.7 Using a link and setResponsePage to navigate to another page

Create page
manually

Respond with
next page

122 CHAPTER 5 Working with components: labels, links, and repeaters
 Table 5.1 lists several options for responding to client actions. Next to the Link com-
ponent, it lists two other link components: AjaxLink and AjaxFallbackLink. They’re
similar, so we’ll discuss the link that has the broadest use: the AjaxFallbackLink.

5.4.2 Using AjaxFallbackLink to respond to client actions

The Link we discussed in the previous section causes a full request/response cycle to
take place, during which the entrance page is rendered again if you don’t direct
to another page. This approach has some drawbacks: rendering a full page costs time
and bandwidth, downloading the full markup of the page takes time too, and the
browser needs to re-render the full page in its window. All this time, the user is waiting
for something to happen.

 With Ajax, it’s possible to send a request to the server asynchronously from the
main browser thread. This keeps the browser responsive to user actions because the main
thread isn’t blocked waiting for a server response. The server can send a small
response back to the browser that updates only those parts of the page that have been
changed. This typically results in more requests being fired on your server, but each
request usually places a lower load on the server because less data has to be gathered
and transmitted per request. The overall user experience is richer than if the entire
page were being refreshed with each action.

 AjaxFallbackLink is a link component that works in a browser regardless of
whether Ajax and JavaScript are available. In the fallback scenario, the link uses the
normal request/response cycle and refreshes the entire page in the browser window
as a normal Link component would. To work in the Ajax scenario, the link also gener-
ates a JavaScript onclick event handler in the markup, in which the Ajax callback is
performed. The onclick handler is called only when the browser supports JavaScript.
This way, AjaxFallbackLink works in all browsers.

 This dual mode for AjaxFallbackLink makes it a hybrid of the normal Link com-
ponent (which works even in older browsers or when JavaScript is disabled) and Ajax-
Link (which can operate only when the browser supports JavaScript and Ajax).

 As an example of performing Ajax updates using AjaxFallbackLink, we’ll return to
the cheese store and make adding a cheese to the shopping cart take place using Ajax.
Figure 5.8 shows what we want to do.

add using
Ajax

Figure 5.8

Updating our shopping cart
using Ajax. The Add link is
replaced with an AjaxLink.
When clicked, it updates only
the ShoppingCartPanel on
the page, asynchronously.

123Responding to client actions with a link
To implement this, we don’t have to modify the markup at all; and only the Java code
needs to be modified for the page to do Ajax tricks. Changing the page to make it per-
form Ajax tricks requires us to change only the Java code. Listing 5.8 shows the final
Java code with annotations for each modification.

public class Index extends CheesrPage {
 private ShoppingCartPanel shoppingcart;

 public Index() {
 PageableListView cheeses = new PageableListView("cheeses",
 getCheeses(), 5) {
 @Override
 protected void populateItem(ListItem item) {
 Cheese cheese = (Cheese) item.getModelObject();
 item.add(new Label("name", cheese.getName()));
 item.add(new Label("description",cheese.getDescription()));
 item.add(new Label("price", "$" + cheese.getPrice()));

 item.add(new AjaxFallbackLink("add", item.getModel()) {

 @Override
 public void onClick(AjaxRequestTarget target) {
 Cheese selected = (Cheese) getModelObject();
 getCart().add(selected);
 if(target != null) {
 target.addComponent(shoppingcart);
 }
 }
 });
 }
 };
 add(cheeses);
 add(new PagingNavigator("navigator", cheeses));

 shoppingcart = new ShoppingCartPanel("cart", getCart());
 shoppingcart.setOutputMarkupId(true);
 add(shoppingcart);

 add(new Link("checkout") { ... });
 }
}

The page remains largely the same as the final result from chapter 3. We add the
shopping-cart panel to the page as a private variable b so we can easily reference it
when we want to update it in the Ajax link e. We replace the Link with an AjaxFall-
backLink c; AjaxFallbackLink works in browsers with and without Ajax capabilities.
If the browser sends an Ajax request, the target parameter d won’t be null, and we
can add to it the components that require updating. If a normal request is sent, the
target parameter is null and we have to refresh the whole page.

 When you update a component using Wicket’s Ajax capabilities, the component’s
markup is rendered anew and sent back to the browser. Wicket’s Ajax mechanism
needs to be able to find the old markup in the browser’s DOM to replace it with the

Listing 5.8 Front page of the shop using Ajax to add items to the shopping cart

Added for
easy accessb

Changed to
AjaxFallbackLink

c

Added parameter target d

Refresh
shopping cart

e

Ensure
DOM idf

124 CHAPTER 5 Working with components: labels, links, and repeaters
new markup. So, we need to render a markup identifier for the component that we
want to replace using Ajax f. The method setOutputMarkupId instructs Wicket to
generate such a markup identifier for us; Wicket takes care of generating an id
attribute that is guaranteed to be unique within the HTML document.

NOTE AjaxRequestTarget lets you update multiple components at one time.
All you need to do is add all of them to the target—and don’t forget to
give them a markup identifier. AjaxRequestTarget also allows you to run
JavaScript before and after the component updates. This way, you can
easily integrate any of the available JavaScript libraries or widget toolkits
to add Web 2.0 effects to your components. Wicket doesn’t provide a Java-
Script effects library yet, but there are plenty to be found on the web or
in the Wicket Stuff project.

The observant reader may notice that the Total field doesn’t update with each addi-
tion to the cart using Ajax. It’s left as an exercise for you to implement this feature as
well as turn the delete link in the ShoppingCartPanel into an Ajax link.

 With the AjaxFallbackLink, you have a component that creates modern, respon-
sive web-based UIs and doesn’t hang users out to dry when their browser doesn’t sup-
port JavaScript or Ajax. You now have a reasonably complete overview of the
possibilities when using the various links. You can navigate to external documents on
the web, create a navigation structure within an application, and create links that
respond to user actions. In the next section, we’ll look at the components from table 5.1
that enable you to repeat markup and components.

5.5 Using repeaters to repeat markup and components
When you’re layering lasagna, you do the same thing over and over: you might create
a thin, smooth layer of sauce; add slices of salami; add cheese; cover it all with lasagna
noodles; and repeat until the lasagna tray is full. You repeat the ingredients according
to a specific recipe. As analogies go, Wicket also has a couple of components that
repeat ingredients, or rather components. These components are generally called
repeaters, and Wicket provides several, each with a specific goal.

 As with most components discussed so far, you’ve already seen the ListView used
to render the list of cheeses and the contents of the shopping cart in the online
cheese store. In this section, we’ll revisit the ListView and introduce the Repeating-
View as a do-it-yourself way to repeat components and their markup.

5.5.1 Using the RepeatingView to repeat markup and components
The RepeatingView is a component that doesn’t do anything except write out the
components that are added to it. The concept of the repeating view is best explained
using a simple example:

<!-- markup -->

 <li wicket:id="rv">

125Using repeaters to repeat markup and components
// java, in e.g. constructor of page
RepeatingView rv = new RepeatingView("rv");
add(rv);
for(int i = 0; i < 5; i++) {
 rv.add(new Label(String.valueOf(i), "Value " + i));
}

<!-- rendered markup -->

 <li wicket:id="rv">Value 0
 <li wicket:id="rv">Value 1
 <li wicket:id="rv">Value 2
 <li wicket:id="rv">Value 3
 <li wicket:id="rv">Value 4

When you compare the original and the rendered markup in this example, you can
see that the markup is repeated five times, each with different contents. Note that you
first add the repeating view to the page hierarchy; otherwise it can’t render its chil-
dren. In the for loop, we repeatedly add a Label component to the repeating view.
The view renders its markup against its child components. In this example, each label
is paired to the li tag. Note that we add each label with a unique identifier, which we
derive by converting the loop counter into a string. Because the labels are added as
children to the repeating view at the same level in the hierarchy, we have to ensure
that the identifiers are unique. The repeating view provides the newChildId method
for generating these identifiers, so you can use that instead of conjuring the identifi-
ers yourself.

 How can you use the repeating view in a setting where you have to render a more
complex component hierarchy, such as a menu? An application menu is typically cre-
ated using an unordered list (menu tags have been deprecated in the HTML specifica-
tion) and some links. By applying CSS and background imagery, you can make the
menu look any way you want. Figure 5.9 shows one example of transforming the unor-
dered list to something more appealing using CSS. Many websites are dedicated to cre-
ating CSS-styled menus, so we’ll skip the CSS and focus on the Wicket end of creating
the menu.

 To create this menu, we need a list of menu items with captions and destinations.
We then have to loop through that list and create the markup elements for each item.
Each element consists of a link to the destination page and a label containing the

<ul style="menu">
 Home
 Cheeses
 Wines
 Recipes

e<<///aaaa>>>< /li>
esseesss<<<<<//aaa>
ess<<<////aaaaa>>>><<
peeessss<<<<<///aa>>>

Home
Cheeses
Wines
Recipes

Home Cheeses Wine

css

Figure 5.9 Creating a menu using a repeating view and an unordered list. Sprinkle in some
CSS, garnish with some images, and get an appetizing menu.

126 CHAPTER 5 Working with components: labels, links, and repeaters
caption. Listing 5.9 shows how to render a (basic) menu using a repeating view, illus-
trating a more complex hierarchy.

/** Class for modeling a menu item for our application. */
public class MenuItem implements Serializable {
 /** the caption of the menu item */
 private String caption;

 /** the (bookmarkable) page the menu item links to */
 private Class destination;

 // ... getters/setters omitted
}

<!-- markup file for page with menu bar -->
<html>
<body>

 <li wicket:id="menu">

</body>
</html>

/** Page with menu bar */
public class PageWithMenu extends WebPage {
 public PageWithMenu(List<MenuItem> menu) {
 RepeatingView rv = new RepeatingView("menu");
 add(rv);
 for(MenuItem item : menu) {
 WebMarkupContainer parent =
 new WebMarkupContainer(rv.newChildId());
 rv.add(parent);
 BookmarkablePageLink link =
 new BookmarkablePageLink("link", item.getDestination());
 parent.add(link);
 link.add(new Label("caption", item.getCaption()));
 }
 }
}

In this example, we create an object-oriented abstraction of a menu item and provide
our page with a list of menu items. There are two things to note in this example. First
is the use of the newChildId method to generate unique identifiers for the children
added directly to the repeating view d. The second, possibly more confusing, thing is
the extra component between the link and the repeating view.

 This extra component, a WebMarkupContainer called parent c is introduced
because we need to repeat a nesting of components. The BookmarkablePageLink
needs to be attached to a <a href> tag. But the menu item consists not only of the

Listing 5.9 Generating a menu using a repeating view

Menu item
markup

b

Extra component
level

c

Generate unique
identifiersd

127Using repeaters to repeat markup and components
link tag, but also of the surrounding list item (li) tags b. So, we introduce the
generic WebMarkupContainer as a parent for our link.

 The WebMarkupContainer is a generic component that in itself doesn’t do much. It
can contain child components, so it’s a handy tool to group components or use as an
intermediate layer when you need to group more markup for a component. Grouping
and organizing components is discussed in chapter 7.

 Taking a step back from the menu implementation, the repeating view also doesn’t
do much. It repeats the markup it’s attached to, and you need to maintain the one-to-
one relationship between the markup and component hierarchy. The component
structure of the repeating view is static. Once the components have been added and
the contents of your list change, you have to reconstruct the repeating view. This isn’t
a bad thing, but it’s something you have to be aware of.

The repeating view is a low-level approach to create lists of components—maybe too
low. The ListView component offers a more complete out-of-the-box approach to
building lists in your pages.

Updating the contents of a RepeatingView
When you need to refresh the contents of a repeating view—for instance, when menu
items are added or updated—you have two choices: update the repeating view’s
component structure to reflect your changes (for example, remove the second menu
item, replace the third, and add a fifth item), or remove all the children and repaint
the view completely.

This meddling with the children of the RepeatingView component is best done by
overriding the repeating view’s onPopulate event. The following code shows how to
replace the contents:

@Override
protected void onPopulate() {
 removeAll();
 for(MenuItem item : menu) {
 WebMarkupContainer parent =
 new WebMarkupContainer(newChildId());
 add(parent);
 BookmarkablePageLink link =
 new BookmarkablePageLink("link",
 item.getDestination());
 parent.add(link);
 link.add(new Label("caption", item.getCaption()));
 }
}

In this example, we first remove all children and then recreate the menu items. Note
that the onPopulate callback is a member of the RepeatingView; when we add the
parent, we add it to the RepeatingView directly.

removes all child
components

128 CHAPTER 5 Working with components: labels, links, and repeaters
5.5.2 Using a ListView to repeat markup and components

Ultimately, both the RepeatingView and the ListView components solve the same
problem: they repeat component hierarchies and markup. The list view is different in
that it encapsulates the logic you must perform with a repeating view. In this section,
we’ll compare the repeating and list views. We’ll look inside the list view and see what
you can customize, and we’ll also give you an idea of things to watch out for when
you’re working with database-backed lists.

 First, let’s implement the menu from listing 5.9 to see how the ListView compo-
nent is different from the RepeatingView. Listing 5.10 shows our implementation
using a list view. We omitted the menu item class, because it hasn’t changed between
the two implementations.

/** Page with menu bar */
public class PageWithMenu extends WebPage {
 public PageWithMenu(List<MenuItem> menu) {
 ListView lv = new ListView("menu", menu) {
 @Override
 protected void populateItem(ListItem item) {
 MenuItem menuitem = (MenuItem)item.getModelObject();
 BookmarkablePageLink link =
 new BookmarkablePageLink("link", menuitem.getDestination());
 link.add(new Label("caption", menuitem.caption));
 item.add(link);
 }
 };
 add(lv);
 }
}

The ListView component iterates through the items in the supplied list. For each
item in the list, it create a ListItem object. The ListItem is given the Nth element of
the list as a model. The list view then calls populateItem to give us a chance to add
components to the ListItem. Effectively, the ListItem fulfills the role of the Web-
MarkupContainer from listing 5.9.

 When you compare listings 5.9 and 5.10, you can see that the ListView compo-
nent saves code. You don’t have to run the loop yourself to add components, and you
don’t have to add a WebMarkupContainer because the ListItem provides that role.
The list view also rebuilds itself each time it’s rendered. So, you can change the con-
tents of the list, and the rendered list view shows the updated contents (try it: add two
links to the page, and add/remove menu items in their onClick events).

 When you display the results of a database query in your list view, you typically want
to recreate the whole list instead of manipulating the elements of the list. The handiest
way to handle this is to wrap your list and its retrieval in a LoadableDetachableModel (as
we described in chapter 4). For instance, the code in listing 5.11 reloads the collection
of cheeses from the database using a DAO and displays the names using a list view.

Listing 5.10 Building a menu with a ListView vs. a RepeatingView

129Using repeaters to repeat markup and components
public class CheesesPage extends WebPage {
 public class CheesesModel extends LoadableDetachableModel {
 protected Object load() {
 CheeseDao dao = ...
 return dao.list();
 }
 }
 public CheesesPage() {
 add(new PropertyListView("cheeses", new CheesesModel()) {
 @Override
 protected void populateItem(ListItem item) {
 add(new Label("name"));
 }
 }
 }
}

Using the CheesesModel, we retrieve the list of cheeses on each request and cache it
during the request processing; typically, it doesn’t affect performance. Depending on
your caching strategy, the results are also cached at the data access layer or in the data-
base itself.

 You may have noticed the use of a PropertyListView component instead of a nor-
mal ListView. The PropertyListView wraps the model of each item in a Compound-
PropertyModel, which is why we can use the label without specifying an explicit model.

 You can override the default way in which Wicket gets the model used for each list
item. This is usually a good idea when you add links with each list item that perform
some logic on the selected item—for instance, deleting the item. The default list view
works by assuming that the list doesn’t change between requests, and uses an indexed
approach to accessing the elements. If someone changes the contents of the data-
base—for example, by adding a new cheese to the collection—this can change the
order of the list. Perhaps on the next request item 12 from our collection of cheeses is
no longer the expected raejuusto cheese, but turns out to point to the Venezuelan
beaver cheese.

 To remedy such unfortunate misunderstandings, you should change the list item’s
model to store the object identifier instead of the index in the list. Fortunately, you
can override the creation of the list item’s model, as shown in listing 5.12.

add(new ListView("cheeses", new CheesesModel()) {
 @Override
 protected void populateItem(final ListItem item) {
 add(new Label("name"));
 add(new Link("delete") {
 protected void onClick() {
 Cheese cheese = (Cheese)item.getModelObject();
 CheeseDao dao = ...
 dao.delete(cheese);

Listing 5.11 Refreshing a ListView using a LoadableDetachableModel

Listing 5.12 Replacing the default item model of a ListView with our own

130 CHAPTER 5 Working with components: labels, links, and repeaters
 }
 });
 }
 @Override
 protected IModel getListItemModel(IModel listViewModel, int index) {
 Cheese cheese = ((List<Cheese>)listViewModel).get(index);
 return new CompoundPropertyModel(new CheeseModel(cheese));
 }
}

We override the list view’s getListItemModel factory method and provide our own
model implementation for each list item. This example reuses the CheeseModel from
chapter 4 (a LoadableDetachableModel that reloads the cheese based on the cheese’s
object identifier). By nesting it in a compound property model, we keep the benefits
of not having to specify a model with each component in the list item. Note that we
could change the type of the list view back to a normal ListView, because we provide
our own CompoundPropertyModel.

ListView and RepeatingView are the basic repeating components and a valuable
asset to your Wicket toolbox. Together with labels and links, they’re the key ingredi-
ents for any Wicket application.

 Even though we’ve gone through table 5.1’s allotted goals for this chapter, we want
to share additional important knowledge before diving into the next chapter. You may
want to perform several basic tasks using the components we just introduced, such as
conditionally hiding part of the page or modifying attributes of markup tags. The next
section discusses several of those common tasks.

5.6 Performing common tasks with components
The secret to good cooking is not only in the ingredients but also in the way you pre-
pare them. You can easily turn a juicy, prime cut steak into a chunk of tough leather if
you prepare and cook it the wrong way. The analogy holds for programming as well:
no matter how great your tools, language, or libraries, if you use them incorrectly, the
result may be tough to swallow. To be able to use ingredients or tools appropriately,
you need to know what you can do with them.

Working with large collections
When the lists you want to show aren’t too large, the ListView is a good choice;
but when the list gets so large that you need it to be paged, the ListView becomes
burdensome. The problem is that the ListView uses a list as its model. The whole
list needs to be loaded in memory for it to work. Even the PageableListView (fea-
tured in chapter 3) loads the whole list in memory before it renders items 41
through 50 of 200. To mitigate this problem, you should consider the DataView
and its cousins. These components are much better suited for working in a data-
base-backed environment.

131Performing common tasks with components
 In the next couple of sections, we’ll discuss ways you can prepare your components
while building your application. You’ll learn how to manipulate the attributes of the
markup, how to remove excess markup, and how to remove those special Wicket tags.
First, let’s look at how to change the visibility of components.

5.6.1 Hiding parts of a page

A common requirement is to hide part of a page because some condition isn’t met.
The reasons for hiding parts of a page can be diverse. For example, in our cheese
store from chapter 3, we didn’t show the Checkout button until the user had a prod-
uct in the shopping cart. Another example is a gold Member badge that should be vis-
ible only to repeat customers with a spending habit of more than $18,000 per month.
Or consider a list of humorously shaped vegetables, visible only to visitors over 18
years of age.

 A simplistic approach to hide part of the page is to not add it to the component
hierarchy. But in Wicket’s case this doesn’t work, because the component hierarchy
and the markup need to match: anything that is a component in the markup must
have a Java counterpart. You can tell a component to become invisible, which removes
the component’s markup from the output. You’re still required to add the component
to the hierarchy, but you can hide it from the final output.

 Hiding any component is simple. Each component has a method to set visibility, as
shown in the next snippet, where we toggle the visibility of a label:

label.setVisible(false); // hide the label
label.setVisible(!label.isVisible()); // toggle the visibility

The effect of making a component invisible is that its markup and the markup of its chil-
dren are completely removed from the rendered page. For instance, when you make a
panel, a form, or a page invisible, all markup for that component and its children is
removed. In the case of a page, you see an empty response without any markup.

 Setting the flag to determine visibility is a static way of working. When the visibility
of a component can change dynamically, it’s usually better to override the isVisible
method and determine the visibility each time it’s queried. The following example
shows a label that is visible only on weekdays:

add(new Label("label", "I'm only visible on weekdays!") {
 @Override
 public boolean isVisible() {
 int day = Calendar.getInstance().get(Calendar.DAY_OF_WEEK);
 return day != Calendar.SATURDAY && day != Calendar.SUNDAY;
 }
});

The isVisible method can be called several times during a request, so it’s best to
ensure that you don’t perform heavy processing here. Using the override, you can do
all kinds of visibility tricks: for instance, you can toggle the visibility of two compo-
nents so one hides when the other is visible and vice versa.

132 CHAPTER 5 Working with components: labels, links, and repeaters
 When you want to hide more than just the markup of the component, such as
neighboring components and the markup surrounding them, you can use a special
Wicket tag in the markup to group them. Listing 5.13 shows an example.

<html>
<body>
 <h1>Billing information</h1>
 <table>
 <wicket:enclosure child="name">
 <tr><th colspan="2">Billing address</th></tr>
 <tr><th>Name</th><td wicket:id="name"></td></tr>
 <tr><th>Street</th><td wicket:id="street"></td></tr>
 </wicket:enclosure>
 </table>
</body>
</html>

The enclosure is wrapped around three table rows that contain information for the bill-
ing address. We tell Wicket that the entire enclosure should be hidden when the name
component isn’t visible, by specifying the child identifier that regulates the visibility
for the whole enclosure. You can specify only one identifier.

 The wicket:enclosure tag doesn’t have an explicit Java counterpart: Wicket auto-
matically adds the necessary component to the hierarchy and makes sure that the
component hierarchy remains in one-to-one correspondence.

The visibility of components isn’t always controlled by data or computation. Often, it’s
linked directly to the role of the user and her authorization level. In chapter 11, you’ll
learn how to implement authorization strategies to control the visibility of components.

 Let’s look at another way of manipulating components and see how you can
change the attributes of the component’s tag in the markup.

Listing 5.13 Hiding surrounding markup and sibling components

Changing the visibility of components using Ajax
If you’re thinking of modifying the visibility of your components using Ajax, be aware
that you need to do more than set the visibility to false. Because the markup for a
hidden component is absent from the final markup, you won’t be able to make the
component visible again using Ajax if you don’t take precautions.

A hidden component leaves a special placeholder tag in the markup to enable Ajax
visibility changes when you set setOutputMarkupPlaceholderTag to true. The
placeholder still renders invisible in your markup with the use of CSS:

Wicket’s Ajax functionality is discussed in greater detail in chapter 10.

133Performing common tasks with components
5.6.2 Manipulating markup attributes

With Wicket, you can specify markup attributes directly in the HTML template. This
approach is static: there is no way to change attributes by putting something inside the
template. But you can use a couple of techniques to modify the attributes of the com-
ponent tags:

■ Override the onComponentTag method
■ Use attribute modifiers

We’ll discuss these methods next. We’ll use the Hello World! example from chapter 1 as
our example case and change the font color of the text programmatically. Listing 5.14
recaps the code from chapter 1.

<html>
<body>
<h1 wicket:id="message">Text goes here</h1>
</body>
</html>

public class HelloWorldPage extends WebPage {
 public HelloWorldPage() {
 add(new Label("message", "Hello, World!"));
 }
}

As you can see, this text is boring. Let’s make the text red from inside the Java code.
To do so, we need to modify the h1 tag such that it renders like the following markup:

<h1 style="color:red">Hello, World!</h1>

Figure 5.10 shows an example of how
this would be rendered.

 We could add the style attribute to
the markup and be done, but that would
be cheating. Let’s open our Hello-
WorldPage class and try to modify the
attribute using Java code.
MODIFYING ATTRIBUTES USING ONCOMPONENTTAG

Overriding the onComponentTag method is the first option to modifying the attributes
of the component tag. The onComponentTag method is called when Wicket is render-
ing the component’s start tag. This is the moment to add or modify any attributes on
the component tag. Here’s the code that makes our message red:

public class HelloWorldPage extends WebPage {
 public HelloWorldPage() {
 add(new Label("message", "Hello, World!") {
 @Override
 protected void onComponentTag(ComponentTag tag) {

Listing 5.14 Hello World! example from chapter 1

Hello! Hello!

Figure 5.10 Transforming black text to red

134 CHAPTER 5 Working with components: labels, links, and repeaters
 super.onComponentTag(tag);
 tag.put("style", "color:red");
 }
 });
 }
}

Using this technique, we have to remember to call the parent onComponentTag,
because the parent component (in this case, the Label), may need to modify the tags
itself. Just like the attributes, you can change the tag. For instance, we can change the
h1 tag to a h3 tag:

@Override
protected void onComponentTag(ComponentTag tag) {
 super.onComponentTag(tag);
 tag.setName("h3");
 tag.put("style", "color:red");
}

This is a powerful way to work with component markup from inside your server-side
Java code. With this power comes responsibility, as well: don’t forget to call onCompo-
nentTag on the super class, or you’ll break something eventually.

 This approach has one problem: it requires you to subclass your components to
manipulate the tags. Can’t you extend a component without subclassing it? Attribute
modifiers let you access the attributes of your components.
MODIFYING ATTRIBUTES USING ATTRIBUTE MODIFIERS

The attribute modifier is an example of the concept of behaviors, which we discussed
in chapter 2. The attribute modifier manipulates the component tag on a more gen-
eral level. You can create an attribute modifier to add JavaScript to a component tag
and reuse it for different components. The next example uses an AttributeModifier
to modify our label’s style tag:

public class HelloWorldPage extends WebPage {
 public HelloWorldPage() {
 add(new Label("message", "Hello, World!").add(
 new AttributeModifier(
 "style",
 true,
 new Model("color:red")));
 }
}

The AttributeModifier uses an IModel for the attribute value. This means you can
retrieve the attribute value at a later time from any place—for example, a database or
a resource file. This enables you to add localized messages to accessibility markup fea-
tures, such as the title and alt attributes.

 As another example to show the power of attribute modifiers, let’s add a JavaScript
confirmation dialog to a link. Requesting confirmation for expensive or dangerous
operations is one way to improve the usability of your applications. Listing 5.15 shows
a basic implementation of adding confirmation behavior to a link in a generic way.

Don’t
forget
super

Change
color

Change
tag

Attribute
nameAdd if not

present

Attribute
value

135Performing common tasks with components
<html>
<body>
<h1>WOPR</h1>
Play global thermonuclear war
</body>
</html>

public class MyPage extends WebPage {
 public MyPage() {
 Link link = new Link("link") {
 @Override
 protected void onClick() {
 System.out.println("Link clicked");
 }
 };
 add(link);
 link.add(new SimpleAttributeModifier("onclick",
 "return confirm('Are you sure?');");
 }
}

In this quick example, we add a link to the page that logs a message to the console.
The link is fitted with an attribute modifier that adds an onclick event to the link’s
tag. The browser asks for confirmation with the message “Are you sure?” If the user
clicks OK, the browser sends the request to the server; if the user clicks Cancel, noth-
ing happens. Figure 5.11 shows how this looks in the browser.

 This example shows how you can use attribute modifiers to add JavaScript events
to existing components in an elegant way without much effort. When we discuss cre-
ating rich components in chapter 10, you’ll see how you can use attribute modifiers
to pull your Web 1.0 application into the twenty-first century with Ajax and superflu-
ous effects.

 You may have wondered about the markup in our examples carrying some extra
weight when rendered to the browser: the wicket:id and, in some cases, the label’s
tags. Let’s travel light by removing that excess baggage.

Listing 5.15 Adding a confirmation popup to a link

WOPR
Play global thermonuclear warthermonuclear war

Figure 5.11

A screenshot of the
confirmation link created by
adding an attribute modifier
to a Link component

136 CHAPTER 5 Working with components: labels, links, and repeaters
5.6.3 Removing excess markup

In all our previous examples, the label’s open and close tags appear in the final out-
put. Sometimes you want to remove those tags to produce smaller markup, or to
remove tags that cause layout problems when they appear out of context in the HTML.
Take the following, chewed-up Hello World! example:

<!-- original markup -->
<html>
<body>
Message
</body>
</html>

/* Java code */
add(new Label("message", "Hello, World!"));

<!-- final markup -->
<html>
<body>
Hello, World!
</body>
</html>

In the final markup, the span tags and the Wicket identifiers are still rendered. If you
want to remove the span tags from the final output, you can use the following setting
on the Label component: setRenderBodyOnly(boolean value). This setting is part of
all Wicket components, and it works on almost all of them in a similar way. Exceptions
are the Page component and components that don’t have their own markup but
repeat the attached markup, such as repeating views and list views.

 Let’s see how this setting works on our label in the following example. Here we’ve
altered the Java code to hide the Wicket-specific tags:

/* Java code */
add(new Label("message", "Hello, World!").setRenderBodyOnly(true));

<!-- final markup -->
<html>
<body>
Hello, World!
</body>
</html>

In the final markup, the span tags have disappeared, along with the Wicket identifiers.
This is a nice way to clean up the excess markup that is sometimes necessary to con-
struct a working page.

 In some cases, you need to add markup in a place where it’s illegal to do so. Con-
sider the following markup example:

<table>

 <tr>
 <td wicket:id="cols1">...</td>

Excess
span tags

Render
body only

Span no
more

137Summary
 </tr>
 <tr>
 <td wicket:id="cols2">...</td>
 </tr>

</table>

The span tags in this example are illegal as per the HTML specification: the only tags
that are allowed as children of a table tag are the tr, tfoot, tbody, and thead. For
those who want to keep their markup clean, Wicket provides a special Wicket tag for
these situations: wicket:container. Because the tag resides in the wicket namespace,
replacing span with the wicket:container tag produces valid markup. The next
example shows what this looks like:

<table>
<wicket:container wicket:id="rows">
 <tr>
 <td wicket:id="cols1">...</td>
 </tr>
 <tr>
 <td wicket:id="cols2">...</td>
 </tr>
</wicket:container>
</table>

Using the wicket:container tag has the benefit of passing a validator, which is a
requirement for some projects and companies. Keep in mind, though, that all Wicket
namespaced tags are removed from the final markup if you run your application in
production mode. We’ll discuss configuring your Wicket application for production
in chapter 14.

5.7 Summary
In this chapter, we looked at a some components: basic ingredients that enable you to
build web applications using Wicket. You learned how to render plain text, formatted
text, and text containing HTML to the browser. Although rendering text containing
HTML is handy and gives you and your users great power, you shouldn’t ignore the
safety concerns that stem from this approach. Your site won’t be the first to fall prey to
insertion attacks.

 Displaying content is important for any web application, but an application is more
than a set of pages without relationships. Using links, you can navigate to other websites
or within your own application. With bookmarkable links, you let users store a book-
mark to a particular spot of interest in the application or site (for instance, an article).

 Links are also suited to respond to users’ actions, such as removing all the data from
a database or performing an action and navigating to another page. The AjaxFall-
backLink is instrumental in transforming an old-style link-based page to a Web 2.0, Ajax-
enabled page, while still providing support to browsers that shun JavaScript or Ajax.

 Next, we showed how to repeat components to render lists of data. Using a
RepeatingView component, we created an example menu for web applications. The

138 CHAPTER 5 Working with components: labels, links, and repeaters
menu serves as an example to contrast the hands-on approach of the repeating view
with the more abstract and flexible approach enabled by the list view.

 With the basic components covered, we discussed several operations you can per-
form on them. Hiding a component completely removes it from the markup (unless
you tell the component specifically to leave a placeholder tag, using setOutputMark-
upPlaceholderTag). Using attribute modifiers, you can change all the markup
attributes of your component tags: we showed how to modify a label’s color and how
to add extra JavaScript to a link, asking for confirmation before the request is sent to
the server. Finally, you learned how to clean up the extra markup generated by com-
ponents in places where you don’t want it—for instance, to make the rendered
markup valid.

 The components and operations we’ve discussed should allow you to build a basic
Wicket application. But unfortunately, this isn’t enough for many web applications:
most applications need more methods of interacting with users, such as checkout
forms, comments, and profile edit pages. The next chapter will discuss how to add
forms and form components to your application.

Processing user
input using forms
In the previous chapter, we discussed several ingredients for lasagna. But for a rec-
ipe to be complete, it needs a set of directions for creating the lasagna. Steps in our
particular recipe include preheating the oven, cooking the lasagna sauce (don’t be
shy with the garlic!), layering the lasagna in the oven dish, and letting it simmer in
the oven for half an hour at 190ºC (375ºF).

 Working with forms is like following a set of directions. First, you need to add a
form and form components. Next, you must be able to react when user input is
sent to the server. You need to validate that the input is correct, or at least be in the
format you want. And finally, you should provide feedback to the user when the input
is incorrect.

 In this chapter we’ll discuss forms and how they’re processed. We’ll look at the
various form components you can use to receive input from your users. You’ll learn

In this chapter:
■ How Wicket processes HTML forms
■ Creating HTML forms with Wicket components
■ Submitting forms using Ajax
■ Validating user input with validators
■ Providing feedback to users
139

140 CHAPTER 6 Processing user input using forms
different ways to submit the form using buttons, links, and Ajax. We’ll show you how
you can validate user input and, finally, how you can give feedback.

 We have to cover a lot of topics, so it isn’t surprising that this is a long chapter. Let’s
get started.

6.1 What are forms?
In everyday life, you encounter forms: for example, when you want to buy a car, apply
for insurance, or fill in a lottery ticket. Most web applications are a reflection of or a
replacement for these everyday forms.

 What is a form in Wicket applications? The Form component groups controls that
take user input and processes them when they’re submitted. A form has an HTML part
and a Java (Wicket) part. A form is used to get input from users in the form of text
fields, selection boxes, radio buttons, check boxes, buttons, and more. The form
groups input controls and processes all of them together when the form is submitted.

 Usually, the form itself is invisible to the user—at least, when CSS hasn’t been used
to highlight it in some way. Unfortunately, you can’t skip the form because it’s essen-
tial in processing user input: without the form to group input controls, you wouldn’t
receive the input.

 A Form component needs to be bound to a form tag. Listing 6.1 shows the markup
and corresponding Java code for creating a form.

<!-- html -->
<form wicket:id="form">
 Text field: <input type="text" wicket:id="field" />
 <input type="submit" value="Send to server" />
</form>

/* Java */
Form form = new Form("form") {
 @override
 protected void onSubmit() {
 System.out.println("form was submitted!");
 }
};
add(form);
form.add(new TextField("field", new Model("")));

Adding input controls to the form is as simple as adding components to a page or
panel. Our example adds a text field to the mix b. A form needs to be submitted in
order to have the user input processed. The HTML specification defines a special-
purpose input control to submit a form to the server c. The submit button shows the
value as its caption—in this case, the text Send to server.

 The submit button doesn’t need to be a Wicket component. In this example, we
haven’t added a Wicket identifier to the input tag. How can we react to a user clicking
the submit button? There are several options, which we’ll discuss in more detail in

Listing 6.1 Markup and Java code for creating a form containing a text field

Receive text
input

b

Send input
to serverc

Handle
submit

d

141How does form processing work?
section 6.5. For now, our example shows the simplest approach: subclassing the Form
component and overriding the onSubmit method d.

 Because Wicket’s Form component is just another Java class, you can extend it and
override its methods. This example’s onSubmit implementation prints a message to
the console. In a real application, you can do anything, such as saving an object in a
database, searching cheeses, or sending a confirmation launch code for a thermonu-
clear strike.

 If something goes wrong during the processing of the input, Wicket doesn’t call
onSubmit but instead calls onError. You can optionally override onError and provide
your own error handling.

 The next section will show what can possibly go wrong during processing.

6.2 How does form processing work?
When a form is processed, there are two sides to the story. First, the client (browser)
submits the values of the form components to the server, then the server processes
these values into meaningful domain values and conjures a response. Figure 6.1 shows
how this process works.

 Let’s first look at the client-side of things.

6.2.1 Submitting a form from the browser to the server

A form must be submitted to the server so the application can process the input. For
that, the form tag gets an action attribute in the markup that contains a URL where
the values of each input control should be sent. Wicket takes care of generating this

serverbrowser

submit method:
- get
- post

Render strategy:
- no redirect
- redirect to buffered response
- redirect to render

validate

push

set input

q=wicket
name=john
zip=12345
ssn=444-123

<html>
<body>
<div class="he
</body>

/ht l

onSubmitonError

start

Figure 6.1 Diagram of submitting a form, processing it on the server, and sending the
response. The submittal can be performed using the get or post method. The response
can be generated using different render strategies: no redirect, redirect to buffer, or
redirect to render.

142 CHAPTER 6 Processing user input using forms
URL and putting it in the action attribute—you don’t have to do so when creating
the markup.
SUBMITTING A FORM USING GET

A form can be sent using either of two HTTP protocol methods: get or post. The get
method sends a request by encoding the input controls’ values using URL parameters.
This method is typically used for forms where the results need to be bookmarkable,
such as search engines. The get method is limited (by URL length) in the amount of
data that can be submitted and the fact that you can’t upload files using this method.

 Although it usually isn’t apparent to users, a form that uses the get method is con-
sidered safe. This means the request shouldn’t have an adverse effect on the state of
the server. For instance, processing a customer order using a get method isn’t
advised, especially on the public-facing part of your site (or you may end up shipping
a lot of cheese to Google headquarters). An example of a get request is shown in fig-
ure 6.2.

SUBMITTING A FORM USING POST

Conversely, the post method is used for forms when the size of the submitting request
will exceed the URL limit, a file needs to be uploaded, or consequences will result
from submitting the form. Instead of encoding the input values in the URL, the
request’s document body is used to transfer the input values. This lets you submit
larger forms that aren’t restricted to the maximum URL length. Because the input is
contained within the request body, the request can’t be stored in a bookmark. This
also means users can’t easily mess with the input values by modifying the URL. But you
still shouldn’t completely trust the input—there are plenty of ways to modify the input
values, although it’s harder to do.

 Unless told otherwise, Wicket uses the post method by default to submit forms.
You can change the default behavior by either setting the method attribute of the form
tag in the markup file to get or overriding the form’s getMethod method and return-
ing the Form#METHOD_GET constant. When you change the method to get, you should
also turn off redirection (setRedirect(false) in the onSubmit handler). Doing so
gives users the ability to bookmark the resulting page.

 The post method is also known for the infamous popup that users get when they
reload a page generated with a post form (see figure 6.3). The usual practice to stop
users from resubmitting a possibly damaging action (such as depleting their credit
card or your database) is to redirect the browser to a safe URL using the get method
just after the submission. This pattern is called redirect after post.

http://cheesr.com/search?q=lasagna

action

input name

input value

Figure 6.2

A get URL dissected. The action part is used in
the form tag’s action attribute. The input name
and value come from the input controls that are
embedded inside the form tags.

143How does form processing work?
REDIRECT AFTER POST

The redirect after post pattern causes the browser to send two requests to the server:
one submitting the form and one retrieving the result page. When you use detachable
models in your application, this typically means that objects are loaded twice for a sin-
gle form submission: one time to process the form, and one time to generate the
result. But Wicket uses a special implementation of the redirect after post idiom to
optimize this behavior: the response markup is generated in the same request as the
post, and stored in a buffer. Then, the browser is redirected and served with the buff-
ered response directly without having to regenerate it.

 Wicket supports three strategies for handling form submissions, configured at the
application level:

■ No redirect —Renders the response directly; doesn’t prevent reposting of the
form (see IRequestCycleSettings#ONE_PASS_RENDER)

■ Redirect to buffer —Renders the response directly to a buffer, redirects the
browser, and prevents reposting of the form (see IRequestCycleSettings#
REDIRECT_TO_BUFFER)

■ Redirect to render —Redirects the browser directly; renders in a separate request
(see IRequestCycleSettings#REDIRECT_TO_RENDER)

The default strategy of Wicket applications is to redirect to the buffer, because doing
so yields the best of both worlds: the performance of handling everything in one
request and the benefit of not resubmitting forms.

NOTE The redirect is useful for more than posting forms. Wicket uses the redi-
rect pattern for all event listeners. When you create a Link and imple-
ment an action in the onClick handler that should be done only once,
you’re safe with the default render strategy. After processing the event
handler, Wicket redirects the browser to a URL that displays the result.

Now that you’ve seen how values are transmitted to the server, let’s look at what hap-
pens there.

Figure 6.3

The dreaded repost popup. You can
avoid this popup by using the redirect
after post pattern. Wicket uses it
straight out of the box.

144 CHAPTER 6 Processing user input using forms
6.2.2 Processing the form submission on the server

Form processing deals mostly with checking that the provided input is valid. When
Wicket receives the form-submission request, it decodes the request and stores the
submitted value of each form component in the component’s input buffer. HTML
input controls only known strings, so the input is stored as string values.

 When each Wicket component has received its input, validation kicks in. Valida-
tion is a multistep process, as you can see in figure 6.4.

In this figure, you can see that a failure in a step stops further processing for the field
that failed. When even one field has failed any step, the last step (push input) isn’t
performed for any of the fields, and onError is called. Let’s take a closer look at each
of these steps.
CHECKING REQUIRED INPUT

When a form is submitted, the first thing Wicket checks after setting the raw input on
each form component is whether all required values are present in the request. If a
field has been set to be required, it must have input.

 When a required field doesn’t have input, the field is marked as invalid and an
error message is registered. No other validations are performed on this field. When a
value was supplied (or the field was marked as not required), the input is converted in
the next step.
CONVERTING THE INPUT FROM STRING TO THE MODEL TYPE

The input for a form component is delivered to it in the form of a string. But often
you want to edit a date that isn’t just a string—perhaps the value is a ZIP code, a
weight, a measure, an age, or a date. These types can also be in a locale-specific for-
mat. For example, Dutch ZIP codes are formatted 1234 AA, whereas US ZIP codes are
formatted 12345; and large monetary values are written $1,000,000.00 when the locale
is the US but €1.000.000,00 in the Dutch locale.

 Each converter has two modes: converting from string to a particular type and con-
verting from a particular type back to string. The former is used to convert incoming
request parameters into model values. Browsers don’t know about ZIP codes, weights,
and other domain types, so the conversion from model value to string is used when
the response is generated and the input controls need to display their value.

Start
push
input

onError

convert
input

validate
input

onSubmit
required
check

fail fail fail

Figure 6.4 The steps in server-side form processing. When a step fails, Wicket calls
the form’s onError method. When all steps are successful, Wicket calls the
onSubmit method.

145Components for text input
 When the conversion fails, Wicket registers an error message. When the conversion
succeeds for a field, Wicket runs the registered validators using the converted input.
VALIDATING THE CONVERTED INPUT

A validator checks the converted input to see if it conforms to some restrictions. These
restrictions can be anything: a valid credit-card number, a minimum age, or a limited
golf handicap to keep hobbyists off the green. Section 6.6 lists the available validators
and shows you how to create custom validators.

 A failed validation registers the error using its resource key to allow for later inter-
nationalization of the feedback message. Table 6.2 in section 6.7 lists all the informa-
tion you need to create your own feedback message. When a validator fails, it stops the
validation for the component. However, other fields on the form being processed are
still validated.
PUSHING THE CONVERTED VALUE TO THE MODEL

The purpose of form processing is that ultimately the user’s input is stored in the
domain objects. When all validation has passed, Wicket pushes the converted value to
the component’s model by calling getModel().setObject(convertedValue). This
stores the converted value in the model, regardless of what the model does under the
covers (see chapter 4 to learn more about models).

 This step is skipped when any of the previous steps failed for any component of the
form. No input is pushed to the model when there is invalid input.
CALLING ONSUBMIT OR ONERROR

The last thing to do is to call any submit listeners. When any of the previous steps
failed for any child component of the form that was submitted, onError is called on
the form and the submitting button as well (if there was a submitting button). Other-
wise, onSubmit is called on the form and the submitting button.

 What happens after this is up to you. It depends on what your implementation of
onSubmit and onError does. If your onSubmit handler doesn’t set a new response
page, the current page with the form on it is rendered again, showing the new model
values. But when validation errors occur and your onError handler (if you’ve overrid-
den the default implementation) doesn’t set a new response page, Wicket retains the
user’s input and shows the feedback messages. This gives the user the ability to fix any
errors before submitting the form again. When you set a new response page, Wicket
renders that page instead.

 You’ve seen how you can create forms and how the user input gets processed. How
can the user provide you with input? Let’s look at the input controls at your disposal.
First, you’ll learn how to create and use text components.

6.3 Components for text input
The most common form of input for web applications is to submit some form of text.
Most applications store textual data in a database and let users work with that data, be
it personal information for students, customers, employees or patients; liabilities; con-
tracts; product information; rebates; and so on. Figure 6.5 shows the basic compo-
nents that provide textual input to your application.

146 CHAPTER 6 Processing user input using forms
In the following sections, we’ll discuss each of the text components in figure 6.5 and
how you can use them.

6.3.1 Using a TextField to process single-line text

The simplest form component for processing text is the TextField. You use a text
field when you have single-line, limited-length input. You can use a TextField to pro-
cess any type of textual input: strings (for example, a name, an email address, a web-
site URL, or a title), numbers (Social Security number, price, weight, number of
people in a party), and dates. The following example shows how to create a TextField
in markup and in Java code:

<!-- markup -->
<input wicket:id="name" type="text" maxlength="32" />

<!-- Java -->
add(new TextField("name", new PropertyModel(person, "name")));

The text field component must be bound to an input tag with the type "text", as
shown in the example. It isn’t possible to couple the text field component to any other
markup tag.

 The text field is a simple component; all you have to do is add it to a form, or a
child of a form, and provide it with a model. Just like any component, the text field
also works with inheritable models such as CompoundPropertyModel (see chapter 4 for
more information).

 In HTML, you can limit the number of characters the field allows. You do so using
the maxlength attribute. If the value of maxlength is determined at runtime, you can
use an AttributeModifier to change the attribute from inside the Java code. This
comes in handy when you’re building a dynamic form and are able to retrieve the
maximum column length of the property—for instance, using a javax.persistence
(Java Persistence API [JPA]) annotation. How you retrieve the property using annota-
tions is beyond the scope of this book; for now, the next example shows how to con-
strain the length of the text field to 32 characters programmatically:

add(new TextField("name", PropertyModel(person, "name"))
 .add(new SimpleAttributeModifier("maxlength", "32")));

Textfield

Password

Text Field

••••••••

Gouda is a yellowish
Dutch cheese named
after the city of
Gouda. The cheese
is made from cow's

TextArea

Figure 6.5 The basic text components. The text field is useful for single-line input. A
password field obscures its value to ensure privacy. The text area shows a basic
multiline editor without any formatting possibilities.

147Components for text input
Note that this restriction doesn’t limit the length of the input on the server-side. As
always, you should double-check the input using a length validator, because malicious
users may try to tamper with your input fields.

You can use an attribute modifier to modify programmatically any attributes sup-
ported by the input tag. The most useful tags for modifying are maxlength, readonly,
size (although CSS styling is preferable for controlling size), and title.

 The text field is used to show text to the user and to give the user the ability to
modify the text. But how can you prevent bystanders from seeing what the user is typ-
ing in—for example, a password?

6.3.2 Using a PasswordTextField to process a password

The PasswordTextField form component is primarily used for entering passwords on
a sign-in form. Typically, the user has to provide a username and password combina-
tion that is checked against the database before the user is granted access. But there
are other situations in which bystanders shouldn’t be able to read the password—for
instance, when the user is changing her password.

 The HTML input tag with type "password" is just what the doctor ordered. This
tag instructs the browser to obscure the input, rendering it unreadable. The browser

Preventing SQL injection: trust your users as far as you can throw them
When you’re creating a publicly facing website, you should always mistrust input from
your users. This means rigorously adding validations, because the web is no longer
as nice as in 1992 (you can find a great comic regarding this issue here: http://
xkcd.com/327/). Probably the most important advice we can give you is to always
use query parameters instead of string concatenation when you build your SQL que-
ries. If you use concatenation, you’re opening up your application to SQL injection
attacks. This way, a simple query such as

String query = "SELECT * FROM persons WHERE name='" + name + "'";

gives malicious users the ability to drop tables from your database (if the user rights
aren’t correctly managed). For example, the following name value drops the USERS
table!:

"'; DROP TABLE USERS; --"

This risk is easily mitigated by using query parameters. The query becomes

String query = "SELECT * FROM persons WHERE name=?";

and you need to bind the name value to the SQL statement. This not only improves
your security but also gives your database system ample opportunity to cache a com-
piled version of your query, increasing the performance of your application as a whole.

Query parameters are also referred to as bind variables or placeholders.

148 CHAPTER 6 Processing user input using forms
also prevents copying the field’s contents to the clipboard, increasing security slightly
(remember that people still can view the page’s source!). Figure 6.5 shows an example
of how a password field obscures the input.

 Creating a PasswordTextField is as simple as creating a TextField, as shown in
the following example:

<!-- markup -->
<input wicket:id="password" type="password" />

/* Java */
PasswordTextField pw = new PasswordTextField("password", new Model(""));
add(pw);

The PasswordTextField behaves differently from the normal TextField. For starters,
the password field is by default required. This means a user is required to provide input
in the field. You can easily modify this behavior by setting the required flag on the
password component to false.

 Another difference from the normal text field is that, again by default, the Pass-
wordTextField clears its input on each request. This ensures that the password is ini-
tially empty on sign-in forms, but doesn’t prevent password managers from filling in
the password. The following line of code lets the field retain the input if you want it to:

pw.setResetPassword(false);

The last way the PasswordTextField differs from other form components is that it
doesn’t support storing its value in a cookie using setPersistent(true). Storing a pass-
word on a client system in a cookie is insecure, even when you encrypt the value. If you
want to store a client-authentication token, it’s best to create your own cookie and use a
one-way hash with a salt as the value to identify the user. (There is, of course, a lot more
to write about security; chapter 11 is dedicated to securing your application.)

With a TextField component, you can receive single-line input; and with a Password-
TextField, you can make it secure. How can you receive multiline input?

6.3.3 Using a TextArea to process multiline text

In many applications, it’s necessary to provide users with a way to enter multiline text:
for instance, to edit the description of cheeses in our cheese store, or to provide com-
ments with a recipe. The HTML text area input control provides this ability; you use
the TextArea form component like its Wicket counterpart.

Storing form values on the client side with cookies
All form components (except the PasswordTextField) have the ability to store their
value on the client using cookies. All you need to do is tell Wicket to make the field
persistent using field.setPersistent(true). This will set a client-side cookie for
the particular component filled with the model value of the component.

149Selecting from a list of items
 The HTML input control is basic: it allows only line breaks as formatting options.
There are no provisions for user-enabled formatting of the text except by adopting
one of several JavaScript libraries that are available to provide enhanced formatting
options. TinyMCE and FCKeditor are the two most popular libraries and provide an
almost-Microsoft-Word-like experience inside the browser.

 Using the text area is as simple as using the (password) text field:

<!-- markup -->
<textarea wicket:id="description" cols="120" rows="6"></textarea>

<!-- Java -->
add(new TextArea("description",
 new PropertyModel(cheese, "description")));

The markup for the text area requires you to provide the number of columns and
rows; otherwise, your markup won’t be valid HTML. Fortunately, your browser corrects
omissions by using default values for these attributes, but it’s up to the browser to
determine what values are used. Typically, the values for these attributes are specified
in the markup, because they have a profound influence on the layout of the page:
more columns mean a wider input box, and more rows mean a higher box. You can
manipulate them at runtime with attribute modifiers.

 You’ve learned how to create editing controls for free text and add them to your
forms. But free text isn’t the only way to provide input. Often, the number of valid
input choices is limited (for instance, male or female). Using selection controls, you
can restrict user input to a list of choices.

6.4 Selecting from a list of items
There are many ways in which users can interact with forms. We just looked at a free-
format way of receiving textual input. In this section, we’ll examine ways to select
items from a list of choices. In our cheese store, we might implement a credit-card
checkout form and list the number of supported credit cards, or provide something as
simple as being able to select a gender (to address the customer correctly).

 First, we’ll look at selecting a single value from a list, and then we’ll move on to
selecting multiple values.

6.4.1 Selecting a single value from a list of choices
Wicket has several components that allow you to select a single value from a list of
choices. They all work basically the same way but show a different form control to the
user. The input controls are limited to what the HTML specification has to offer,
although some JavaScript libraries provide additional controls. Wicket provides sup-
port only for the standard controls, so we’ll limit our discussion to those in the com-
ing sections. Figure 6.6 shows examples of the provided single-select components.

 As an example, we’ll add a field to our cheese store that lets users select the cate-
gory of the cheese: fresh, whey, goat or sheep, hard, and blue vein. We’ll use this list to
create a cheese category selection component. Let’s look at the first component from
figure 6.6: the ListChoice.

150 CHAPTER 6 Processing user input using forms
USING THE LISTCHOICE TO SELECT A SINGLE VALUE

A ListChoice is a selection control that displays a box with a number of rows inside.
The user can select only one item. The following example shows how to add a
ListChoice in markup and Java:

<!-- html -->
<select wicket:id="category" size="6">
 <option>Hard</option><option>Soft</option>
</select>

/* Java */
List<String> categories = Arrays.asList("Fresh", "Whey",
 "Goat or sheep", "Hard", "Blue vein");
form.add(new ListChoice("category",
 new PropertyModel(cheese, "category"),
 categories));
cheese.setCategory("Blue vein");

The markup shows that we need to use the select tag. Inside the tag, we can include
example markup for previewing the page. The markup contained within the select
tag is replaced with the options we generate in the Java code.

 The ListChoice is added to the form and provided with a model from which to
retrieve the selected value and in which to store the selected value. We also provide
the ListChoice with the available choices—in this case, the list of categories. The list
of choices can also be a model, giving you the ability to manage the list dynamically
using models. For instance, you can use a LoadableDetachableModel to load the list
of categories from the database.

 Note that the ListChoice and all selection components require you to provide the
choices. When you use a ListChoice in combination with a CompoundPropertyModel,
you still have to provide the list of choices, whereas you can omit an explicit model for
the selected value of the component. The following Java code shows you how this works:

Form form = new Form("form", new CompoundPropertyModel(cheese));
add(form);
form.add(new ListChoice("category", new CategoriesModel()));

In this example, the ListChoice uses the CompoundPropertyModel idiom to bind to
the cheese’s category property (category is the component identifier of the List-
Choice) and the CategoriesModel to load the list of categories from the database.

Figure 6.6 An overview of the single-select components provided by Wicket.
Each component allows a user to select one value from a list of choices.

Bind selected value

Provide choices
Set selected value

151Selecting from a list of items
 The number of visible rows is configurable from the Java code, but that property is
best left to the designer and specified in the markup (the size attribute in our exam-
ple). The number of rows can have a profound effect on the layout of your page, so
it’s best not to change it too much. That said, you can choose to alter the number of
rows using setMaxRows(), provided the markup doesn’t have the attribute set.
USING A DROPDOWNCHOICE TO SELECT A SINGLE VALUE

The DropDownChoice component is also used to select a single value, like ListChoice.
A DropDownChoice shows the currently selected value in a single field and shows the
available choices in a popup list when it’s clicked. Because it’s space efficient, it’s prob-
ably the most commonly used selection control.

 Using the DropDownChoice is similar to using the ListChoice. The following example
provides the same functionality as the ListChoice but uses a DropDownChoice instead:

<!-- html -->
<select wicket:id="category">
 <option>Hard</option><option>Soft</option>
</select>

/* Java */
form.add(new DropDownChoice("category",
 new PropertyModel(cheese, "category"),
 categories));

Two changes are important. First, the select tag doesn’t have a size attribute. If you
put the size attribute in, it renders as a ListBox. Second, we now use the DropDown-
Choice component. This is all there is to it. You can use DropDownChoice and
ListChoice interchangeably.
USING A RADIOCHOICE TO SELECT A SINGLE VALUE

If you have a limited number of choices and want to display them all, a RadioChoice
component is perfect. It uses radio buttons to display each choice. Because the radio
component shows all the choices, it takes more space than a DropDownChoice or a
ListChoice. This makes it more user-friendly, though, because the values are immedi-
ately visible.

 Using the RadioChoice is a bit different than using the previous selection compo-
nents. Let’s look at implementing our example with a RadioChoice:

<!-- html -->

 <input type="radio" /> Hard

 <input type="radio" /> Soft

/* Java */
form.add(new RadioChoice("category",
 new PropertyModel(cheese, "category"),
 categories));

As you can see, we replace the select tag with a span and the options with the input
tags. There is no official tag for grouping radio buttons—HTML doesn’t prescribe

152 CHAPTER 6 Processing user input using forms
one. As in the earlier examples, the contents of the outer tags are replaced with the
actual values and are present only for previewing.

 The RadioChoice renders each choice on its own line. You can alter this behavior
by setting the prefix and suffix. The next snippet instructs our RadioChoice to render
all choices on one line by removing the br element from the final output:

form.add(new RadioChoice("category",
 new PropertyModel(cheese, "category"),
 categories).setSuffix(""));

If you need more control over the final markup, look at the RadioGroup component.
It doesn’t generate the list of choices for you, but it serves as a wrapper around radio
buttons such that they function as a RadioChoice.

6.4.2 Selecting multiple values from a list of choices

In some cases, you need to let users select
more than one value. For example, Cabrales
is a blue cheese from northern Spain made
of cow, goat, and ewe milk. This makes the
milk type property of our Cheese object a list
(of milk types).

 Wicket provides two components for
selecting multiple values, as shown in fig-
ure 6.7.

 As in the previous section, these com-
ponents are similar. They need a model
from which to get their selected values and in which to store the selected values, and
they need a list of choices. Let’s first look at the ListMultipleChoice component.
USING A LISTMULTIPLECHOICE COMPONENT TO SELECT MULTIPLE VALUES

The ListMultipleChoice component is almost identical to the ListChoice compo-
nent. It also lists the choices in a box, with each choice on a row. The difference is that
the ListMultipleChoice allows the user to select more than one row at a time.

 Let’s look at an example that uses the milk types for selecting multiple values:

<!-- html -->
<select wicket:id="milkTypes" size="6" multiple="multiple">
 <option>Bison</option><option>Camel</option>
</select>

/* Java */
List<String> choices = Arrays.asList("Camel", "Cow", "Goat",
 "Reindeer", "Sheep", "Yak");
form.add(new ListMultipleChoice("milkTypes",
 new PropertyModel(cheese, "milkTypes"),
 choices));
cheese.getMilkTypes().clear();
cheese.getMilkTypes().add("Cow");
cheese.getMilkTypes().add("Yak");

Figure 6.7 Form components that allow
multiple items to be selected from a list of
choices: the ListMultipleChoice and the
CheckBoxMultipleChoice, respectively.

Bind selected
values

Provide
choicesSelect

choices
b

153Selecting from a list of items
This example renders the selection box with six rows filled with the provided milk
types. We selected two values by adding the values to the list of milk types on the
cheese b, so these values are displayed as selected when the control is rendered.
USING A CHECKBOXMULTIPLECHOICE TO SELECT MULTIPLE VALUES

The CheckBoxMultipleChoice presents choices using check boxes. The user can
select multiple values by clicking the preferred check boxes. Similar to the Radio-
Choice, this component renders all values visible and so can take up a lot of space.

 Using the CheckBoxMultipleChoice should be familiar by now: it’s similar to the pre-
vious selection components, as evidenced by the following example showing the
markup and Java code:

<!-- html -->

 <input type="checkbox" /> Cow

 <input type="checkbox" /> Yak

</select>

/* Java */
List<String> choices = Arrays.asList("Camel", "Cow", "Goat",
 "Reindeer", "Sheep", "Yak");
form.add(new CheckBoxMultipleChoice("milkTypes",
 new PropertyModel(cheese, "milkTypes"),
 choices));

This code renders each choice using a check box on a single line. You can change this
(as you can the RadioChoice) by setting the prefix and suffix (using setPrefix and
setSuffix methods). If you need even more control for generating the list of choices,
look at the CheckGroup component.

 In all our examples for selecting items from a list, we’ve used strings for the list of
choices. But what if you want to include an actual object in the choices? The Choice-
Renderer component provides a mapping between objects and choices.

6.4.3 Mapping an object to a choice and back using a ChoiceRenderer
The list of possible choices often isn’t fixed but changes over time. In such cases, the
list isn’t maintained in Java code, but comes from other places. In most applications,
such lists are kept in database tables and mapped to a Java class.

 In our case, we could replace the milk type property with a proper class backed by a
database table. This would allow us to add kangaroo milk-based cheese when that oppor-
tunity arises, without having to modify our application. Figure 6.8 shows what we’re up to.

id
name
description
price

Cheese

id
name

MilkType

*

1id
name
description
price
milkType

Cheese

milktype

Figure 6.8 Making the MilkType a proper abstraction in our application

154 CHAPTER 6 Processing user input using forms
We’re going to create a MilkType class (with an
identifier and a name property) and use it for a
many-to-one relation on our cheese (the milk-
Type property). Let’s see how each option is
rendered in the markup. Figure 6.9 shows what
is generated for each choice.

 The option has two parts: the value and the
display text. The value attribute is used to iden-
tify the option when the value is submitted. By default, Wicket uses the list index to
generate this value. This approach works in most cases, but it can lead to strange
behavior when the order of the list changes between requests. For instance, take the
case of inserting bison milk in the list: all other choices shift one position. This means
someone who had chosen goat milk suddenly has picked ewe milk, instead.

 We can remedy this issue by using a different value to identify choices instead of
the list index. The object identifier of the MilkType is a good candidate for this task.
For the display value, we want to use the name property of the MilkType.

 How can we perform this mapping for our DropDownChoice component? The
choice family of components uses a conversion interface called the IChoiceRenderer
to transform domain objects into a display value and identifying value. When you
implement the interface, you have to implement these conversions. For the general
case, Wicket has a standard implementation available: the ChoiceRenderer. This
renderer uses property expressions to get at the desired fields: one expression for
the identifying value and one for the display text. Listing 6.2 illustrates the usage of the
ChoiceRenderer in our case.

List<MilkType> choices = dao.getMilkTypes();

ChoiceRenderer renderer = new ChoiceRenderer("name", "id");
form.add(new DropDownChoice("milktype",
 new PropertyModel(cheese, "milkType"),
 choices,
 renderer));

In this example, we change our list of strings to a list of MilkType objects and fetch it
from the database b. We create a choice renderer that maps the name property of
each choice object to the display text and the id property to the option’s value
attribute c. The renderer is passed to the DropDownChoice in the constructor d.
With a ChoiceRenderer we’re able to satisfy both our users and the server: users see a
meaningful description and the server knows exactly which object to select.

 We’ve used check box components to select values from a provided list. But a
check box can also be used in a more binary fashion. It’s well suited to answer yes or
no questions, or more generally suited to modify boolean properties.

Listing 6.2 Using the ChoiceRenderer to match an object to a choice

<option value="1">Camel</option>

for server

for user

Figure 6.9 The markup that is generated
for each option in a DropDownChoice
component

Get from databaseb

Map name
and idc

Use rendererd

155Selecting from a list of items
6.4.4 Using check boxes for boolean properties

“Would you like spam with your cheese?” is a
question we could ask our customers when
they register with our cheese store. In this
modern day and age, the spam wouldn’t
come in cans with an order of cheese
(although that might make the service more attractive) but in a monthly or weekly
newsletter with the latest discounts and offers of cheese. Typically, such questions are
asked using a check box where customers can confirm that they wish to receive the
newsletter (see figure 6.10).

 In our cheese store, we could add a boolean property to our customer object that
registers whether the customer wants to receive newsletters. Binding to the customer
object is then as simple as binding the customer’s wantspam property to the checkbox
using a PropertyModel, as shown in the following snippet:

<!-- markup -->
<input type="checkbox" wicket:id="wantsspam" id="wantspam" />
<label for="wantspam">I want to receive spam with my cheese!</label>

/* Java */
form.add(new CheckBox("wantsspam",
 new PropertyModel(cust, "wantsspam")));

This is one way of using the check box. But there are other use cases: for example, to
toggle the visibility of a part of the UI. Figure 6.11 shows a cheese-search page with an
option to search using more advanced criteria.

 The idea is to hide the more advanced options from the casual user. Most users
are probably happy to search for Gouda or Edam; but if a cheese connoisseur visits
our site, we want to provide more search options. Listing 6.3 shows how to create
such a form using an Ajax-enabled check box for toggling the visibility of the
advanced options.

I want to receive spam with my cheese!

Figure 6.10 Using a check box to receive
spam with a cheese order

Search

Cheese Search Cheese Search

Camel Cow Ewe Goat

Ripeness:

Milk type:

Show advanced options

Search

Show advanced options

Figure 6.11 A cheese-search page with advanced options initially hidden from the user. Clicking the
check box makes the advanced options visible.

156 CHAPTER 6 Processing user input using forms
<!-- markup -->
<h2>Cheese search</h2>
<form wicket:id="form">
 <input type="text" wicket:id="q" />
 <input type="submit" value="Search" />

 <label>
 <input type="checkbox" wicket:id="advanced" />
 Show advanced options
 </label>
 <div wicket:id="wmc">
 Milk type:

 </div>
</form>

/* Java code */
ValueMap searchPars = new ValueMap();
searchPars.put("q", "");
searchPars.put("milktypes", new ArrayList());

Form form = new Form("form", new CompoundPropertyModel(searchPars)) {
 protected void onSubmit() {
 }
});
add(form);
form.add(new TextField("q"));
final WebMarkupContainer wmc = new WebMarkupContainer("wmc");
wmc.setVisible(false);
wmc.setOutputMarkupPlaceholderTag(true);
form.add(wmc);
form.add(new AjaxCheckBox("advanced",
 new PropertyModel(wmc, "visible")) {
 @Override
 protected void onUpdate(AjaxRequestTarget target) {
 target.addComponent(wmc);
 }
});
wmc.add(new CheckBoxMultipleChoice("milktypes", new MilkTypesModel())
 .setPrefix("").setSuffix(""));

In this example, the search form has a special, separate part for the advanced search
options b. The advanced search options are grouped using a WebMarkupContainer
and hidden initially c. Because we’re going to update the visibility using Ajax, we
need to keep a placeholder in the markup d (as explained in chapter 5). The con-
tainer’s visibility is controlled by binding the check box’s model to the visibility
property of the container. By using an AjaxCheckBox, we get notified of a change
directly e; we add the markup container to the Ajax request target so it can either
render itself or hide itself based on its visibility property.

 You’ve seen several ways of letting users answer questions (would you like spam
with your order?), but the answers need to be sent to the server for them to be useful.

Listing 6.3 Markup and Java code for an advanced search form for cheeses

Group advanced
options

b

Stores search
parameters

Search cheeses
using parameters

Initially
hidden

c

Enable Ajax
visibility updatesd

Notify server
on changee

157Components for submitting form data
The next section discusses components that tell the browser to send the accumulated
data to the server.

6.5 Components for submitting form data
In section 6.1, you learned how to submit a form using a normal HTML submit button
without attaching or using a Wicket component. This approach works in many cases, but
sometimes you need more than one button on a form. A nice example for this use case is
the I’m Feeling Lucky button on the Google search page. Another use case is when you
want to display a button that submits the form but that is located outside the form tags.

 This section will show you various components that enable you to submit a form
with more than one button on a form, using links, or using Ajax. We’ll also look at dis-
abling Wicket’s form-processing logic for those cases where you don’t want to validate
the input or don’t want to update the components’ models. Let’s start with buttons.

6.5.1 Using buttons to submit data
A Wicket button is a component that submits a form. When the button is clicked, it
submits the form. Wicket first calls the button’s onSubmit method and then (if not
configured otherwise) calls the form’s onSubmit method. Using the button’s onSubmit
method gives you the opportunity to specify different behaviors for different events.
For instance, you could implement a Save button and also a Copy button. Depending
on which button is clicked, a particular action is taken.

 The Wicket button component can work with two different markup tags: the button
tag and the input tag (of type button or submit). When you use the button tag, you
must supply the contents of the tag for the label. If you use the input tag, the model
value of the button is used to generate the value attribute of the tag (if the model is sup-
plied and not empty). Providing a model allows you to render the caption of the button
with internationalized text (using a ResourceModel or StringResourceModel; see chap-
ter 12). Listing 6.4 gives a short example of the markup alternatives and Java code.

<!-- html -->
<form wicket:id="form">
 <input type="submit" value="Click me!" wicket:id="button1" />
 <button wicket:id="button2" type="submit">Click me!</button>
</form>

/* Java Code */
Form form = new Form("form") {

A standalone check box
The check box is useful as a form component, but you can also use a check box out-
side a form. The only caveat is that it won’t submit a form but instead sends the
change request directly to the server. Any input in forms that haven’t been submitted
yet will be lost when you click the check box.

Listing 6.4 Markup alternatives and Java code for using a button to submit a form

158 CHAPTER 6 Processing user input using forms
 @Override
 protected void onSubmit() {
 System.out.println("Form onSubmit is called");
 }
};
add(form);
form.add(new Button("button1", new Model("Pressing matters")) {
 @Override
 public void onSubmit() {
 System.out.println("Button 1's onSubmit is called");
 }
});
form.add(new Button("button2") {
 @Override
 public void onSubmit() {
 System.out.println("Button 2's onSubmit is called");
 }
});

Here we add the two buttons to the form. The first button uses a model to override
the value attribute of the input tag. The second button doesn’t have that option,
because the contents are plain markup (although you can use a label component or a
panel inside to generate the contents).

 When either button is clicked, its onSubmit method is called; and when that is
completed, the form’s onSubmit method is called. When the user clicks button2 from
the example in listing 6.4, we first see “Button 2’s onSubmit is called” and then “Form
onSubmit is called”.

 Here we use buttons inside a form for submittal, but sometimes you may want to
use a link to submit the form data, or even a button outside the form. With the Sub-
mitLink component, you can.

6.5.2 Using links to submit data

The SubmitLink component acts like a Button but uses JavaScript to submit the form.
The SubmitLink can be used with any markup that supports an onclick JavaScript
event. When it’s used in combination with an <a> tag, it uses the href attribute to gen-
erate the JavaScript necessary to submit the form. A big advantage of the SubmitLink
over the Button component is that the link doesn’t need to be a child of a form to sub-
mit the form. This means you can put the link anywhere on the page no matter the
form’s location.

 The example in listing 6.5 shows two uses for the SubmitLink. One link is inside
the form, and the other is outside.

<!-- html -->
<form wicket:id="form">
 Click me!
</form>
<input type="button" value="Outside!" wicket:id="outside" />

Listing 6.5 Markup and Java code for using a SubmitLink inside and outside a form

Model provides
caption

Can be anything
supporting

onclick

159Components for submitting form data
/* Java Code */
Form form = new Form("form") {
 @Override
 protected void onSubmit() {
 System.out.println("Form onSubmit is called");
 }
};
add(form);
form.add(new SubmitLink("inside") {
 @Override
 public void onSubmit() {
 System.out.println("Inside link's onSubmit is called");
 }
});
add(new SubmitLink("outside", form) {
 @Override
 public void onSubmit() {
 System.out.println("Outside link's onSubmit is called");
 }
});

As you can see in this example, the SubmitLink is used the same way as the Button.
When you use a SubmitLink outside a form, you must provide it with the form that will
be submitted by the link b.

 There is one caveat to using the SubmitLink: your visitors need to have JavaScript
enabled for the link to work. The SubmitLink uses a normal request cycle to submit
the form. If you want a more interactive, Web 2.0 way of submitting the form data, you
may want to use Ajax.

6.5.3 Using Ajax to submit data

Using Ajax gives you the opportunity to provide a more responsive user experience
when submitting form data. Typically, you use Ajax to submit small forms containing a
couple of fields.

 As an example of using an AjaxSubmitLink, we’ll show an Ajax-enabled comment
form for our cheeses. Visitors can submit a comment directly without having to
refresh the whole page. Listing 6.6 shows how to do this in markup and Java.

<!-- html -->
<div wicket:id="comments">
 <h2>Comments</h2>
 <div wicket:id="list">

 </div>
 <form wicket:id="form">
 <textarea wicket:id="editor"></textarea>
 <input type="button"
 wicket:id="save" value="Add comment" />
 </form>
</div>

Listing 6.6 Creating an Ajax-enabled comment form for a cheese detail page

Need formb

Container for
Ajax updates

b

List all
comments

c

Edit
comment

d

160 CHAPTER 6 Processing user input using forms
/* Java code */
final WebMarkupContainer parent = new WebMarkupContainer("comments");
parent.setOutputMarkupId(true);
add(parent);
List<String> comments = ...
parent.add(new ListView("list", comments) {
 @Override
 protected void populateItem(ListItem item) {
 item.add(new Label("comment", item.getModel()));
 }
 });

Form form = new Form("form");
final TextArea editor = new TextArea("editor", new Model(""));
editor.setOutputMarkupId(true);
form.add(editor);
form.add(new AjaxSubmitLink("save") {
 @Override
 protected void onSubmit(AjaxRequestTarget target, Form form) {
 comments.add(editor.getModelObjectAsString());
 editor.setModel(new Model(""));
 target.addComponent(parent);
 target.focusComponent(editor);
 }
 });
parent.add(form);

A lot happens in this example. The outer div in the markup is used to update the
whole list of comments and the form in one go b. The example is basically split into
two parts: one for showing the list of comments c and one for adding a new com-
ment to the list d.

 In the onSubmit method of our AjaxSubmitLink, we retrieve the model value of
the editor and add it to the comments list. We clear the value of the editor to begin
with a clean slate. Then, we add the WebMarkupContainer that groups our list of com-
ments and comment form to the Ajax request target. This repaints our components.
Finally, we set the focus of the browser back to the comment field.

 Because we update the WebMarkupContainer
with Ajax, we need to give it a markup identifier.
The same goes for our editor: to be able to set the
focus on the element, we need its markup identi-
fier. In this example, we instruct Wicket to gener-
ate the markup identifier for us e. Because we
use both the WebMarkupContainer and the editor
inside the anonymous class, we must make their
references final; otherwise we’ll get compile
errors. Figure 6.12 shows the result of our labor.

 We’ve looked at submitting the form in various
ways. When the form is submitted, the automatic
form processing kicks in. But sometimes you need

Generate markup
id for Ajax

e

Comments
This cheese is great with a glass of
Pinot Noir.
I like a Riesling better.
p0wn3d!

Add comment

Figure 6.12 A screenshot of the Ajax
form that processes comments for our
cheese details page

161Components for submitting form data
to bypass the form processing—for instance, to create a Cancel button, or to do some
other processing before submitting the form (like address auto-completion based on
a ZIP code).

6.5.4 Skipping Wicket’s form processing

Imagine that you’re shopping for cheese in our online cheese store. You’ve added a
kilo of Gouda, one pound of Cheddar, and a couple of boxes of Camembert. You go
to the checkout page and fill in your shipping and billing addresses. Just as you start
filling in the credit-card data, you remember that there are more days in the month
than expected, and your paycheck won’t arrive for a couple of days. Saddened by
those 31-day months, you click the Cancel button.

 The Cancel button in this scenario needs to skip our validations, or you won’t be
able to send a request to the server. There are several ways to bypass the form process-
ing. One is to use a normal Link component instead of a button. A normal, nonsub-
mitting link doesn’t submit the form data and hence bypasses the form processing.

 If you want to retain the user input in the form components, you need to submit
the form (this sends the user input to the server) but not process it. To accomplish
this, you have to set the default form-processing flag on the submitting component
(for example, the Button or SubmitLink) to false. This gives you the opportunity to
go to another page to let the user perform another task, and then return to the cur-
rent page without losing the user’s input. Listing 6.7 shows how you can achieve this.

public Page1 extends WebPage {
 public Page1() {
 Form form = new Form("form");
 add(form);
 form.add(new TextField("q", new Model(), Integer.class));
 Button b = new Button("do") {
 @Override public void onSubmit() {
 setResponsePage(new Page2(Page1.this));
 }
 };
 b.setDefaultFormProcessing(false);
 form.add(b);
 form.add(new FeedbackPanel("feedback"));
 }
}

public Page2 extends WebPage {
 public Page2(final Page returnTo) {
 add(new Link("returnLink") {
 @Override public void onClick() {
 setResponsePage(returnTo);
 }
 });
 }
}

Listing 6.7 Bypassing default form processing to retain user input

Accept only
integers

Respond with
new, old

b

Don’t process;
retain input

c

Return to
old paged

162 CHAPTER 6 Processing user input using forms
The button on Page1 navigates to Page2 and provides the current page as a parameter
b. By setting the default form-processing flag to false, we won’t process the user
input, but keep the raw input until it can be used c. Page2 uses the reference when
the user clicks the return link, returning to the old Page1 d. When you try this, you’ll
notice that any input in the text field of Page1 is still there. This opens up possibilities
for implementing complex navigation structures—for example, using pages to look
up information during a long entry process.

 With the submit buttons and links from this section and the input controls dis-
cussed in the sections before, you can create forms of any size and with any complex-
ity. But that only covers the client side of the form-processing equation. Now we need
to look at the server side and make sure the data we receive is valid.

6.6 Validating user input
We’d like to live in a perfect world where nobody makes mistakes and where only nice
and perfect people visit our websites. However, people do make mistakes, and you
should do your best to ensure those mistakes don’t have negative consequences.

 In this section, you’ll learn how to validate user input so you don’t receive bad
or incomplete data. In section 6.2, you learned that form processing consists of
these steps:

1 Checks that required input is supplied.
2 Converts the input value from String to an actual type.
3 Validates the input using the registered validators.
4 Pushes converted and validated input to models.
5 Calls onSubmit or onError.

Steps 1 through 3 are part of the validation cycle. Step 4 is performed only when the
prior steps were all successful for all fields. Wicket takes care of the validation part; you
only need to tell Wicket what to check. Step 5, explained in detail in section 6.2, is obvi-
ous. Let’s take a closer look at steps 1 through 3 and start with step 1: the required check.

6.6.1 Making a field required

How can you tell Wicket that a particular value is required? You specify a setting avail-
able on each form input control. You can set the required flag by doing the following:

field.setRequired(true);

As with most methods of form components, you can chain the method calls as in the
next snippet:

form.add(new TextField("age")
 .setRequired(true)
 .setLabel(new Model("age"))
 .add(NumberValidator.minimum(18)));

This results in concise code (and, in our opinion, more readable code, provided your
IDE’s automatic formatter works correctly).

163Validating user input
 A required field that’s left empty generates an error message. The error message is
looked up using Wicket’s resource-lookup strategies (see chapter 12 for more infor-
mation on this subject) by searching for the resource key Required (case sensitive).

 The message is localized and by default shows “Field ‘${label}’ is required.” If you
need a different language—for example, Dutch—the message is “Veld ‘${label}’ is ver-
plicht.” The ${label} expression is replaced with the offending component’s label or,
if a label hasn’t been set, the component’s identifier. If you want to provide a custom
message, you can use the Required resource key in your resource bundle to override
the message.

 When Wicket has checked the required fields, it converts the raw input to the
domain types.

6.6.2 Converting user input from strings to domain types

As you learned in section 6.2, the browser sends input as strings to the server. Wicket
tries to convert these strings to your domain types, such as numbers, dates, and ZIP
codes. The act of converting the values is discussed in chapter 12. For now, we’ll look
at how to help Wicket determine the domain type.

 For most fields, Wicket can automatically determine the type by using reflection
on the associated model. This doesn’t work when the model isn’t a property model
and the model value is null. For instance, the following snippet doesn’t give any infor-
mation that helps Wicket determine what type the input needs to be converted into:

add(new TextField("age", new Model()));

When Wicket can’t determine the target domain type, it assumes that String is the
correct type. You can help Wicket by supplying the target domain type. In our exam-
ple, we probably want to use an Integer for the age. The following code sets the cor-
rect type on the fields:

add(new TextField("age", new Model(), Integer.class));
add(new TextField("zipcode", new Model()).setType(ZipCode.class));

Wicket uses the domain type (obtained through discovery or provided by you) to look
up a converter. The converter is applied to convert the raw input string. The converters
are registered with the Application object (see Application#getConverterLocator).

 A failed conversion is registered as a validation error using the resource key (for
the feedback message) IConverter or IConverter.<typename> (substitute the type
name for the conversion type, such as Long or ZipCode). For example, we could use
the key age.IConverter or age.IConverter.Integer. Both keys are valid.

 When the conversion is successful, Wicket checks the registered validators. Let’s
look at how you can add them to your fields.

6.6.3 Using Wicket’s supplied validators

Wicket comes with several validators to make your life easier. In this section, we’ll give
you an idea which validators are available and how you can use them.

164 CHAPTER 6 Processing user input using forms
 The NumberValidator class provides several factory methods and ready-made vali-
dators for validating numbers. It has methods for longs and doubles, but they work
equally well for integers and floats, respectively. Here’s an example:

add(new TextField("age").add(NumberValidator.minimum(18)));
add(new TextField("handicap").add(NumberValidator.range(0, 3.5)));
add(new TextField("duration").add(NumberValidator.POSITIVE));

You can check strings using the StringValidator class, which also specifies several
factory methods. Here are some examples of its use:

add(new TextField("userid").add(StringValidator.lengthBetween(8,12)));
add(new TextField("comment").add(StringValidator.maximumLength(4000)));

If you want to check the input using a regular expression, you can use a PatternValidator:

add(new TextField("phone").add(
 new PatternValidator("^[2-9]\\d{2}-\\d{3}-\\d{4}$")));

Ample documentation is available about regular expressions, so we won’t repeat it here.
 The Wicket package includes a couple of standard pattern validators:

add(new TextField("email").add(EmailAddressValidator.getInstance()));
add(new TextField("url").add(new UrlValidator(new String[]{"http"})));

Note that you aren’t limited to text fields, but they’re the most commonly used form
components in conjunction with validators.

 Sometimes you need to compare two field values—for instance, when you want to be
sure a password was entered correctly. In such a case, you need a form-level validator. The
following snippet shows how to ensure that two password fields have the same value:

PasswordTextField field1 = new PasswordTextField("password");
field1.setResetPassword(false);
form.add(field1);

PasswordTextField field2 = new PasswordTextField("controlPassword");
field2.setModel(field1.getModel());
field2.setResetPassword(false);
form.add(field2);

form.add(new EqualPasswordInputValidator(field1, field2));

In this example, we make sure the password fields retain their input. We also let both
fields share the same model; this way, the fields start with the same values and keep it
that way. Note that the validator works on the input, not on the model values. Unless
both fields have the same input value, no input is transferred to the domain object.

 You can also add multiple validators to a component. For instance, you could add a
length validator and a pattern validator to a text field. Doing so would give two valida-
tion errors if the input didn’t conform to either validator. Usually it’s beneficial to add
both a length validator and a pattern validator if the pattern isn’t a regulated pattern
such as an ISBN or SSN.

 What should you do if your own business rules call for a specific validation that isn’t
one of the standard, provided validators? You need to write your own. Let’s take a look.

165Validating user input
6.6.4 Writing your own validator

Even though Wicket comes with many validators and the PatternValidator gives you
a lot of flexibility in rolling your own validators quickly, this may not be enough. A reg-
ular expression won’t help you calculate a modulo 11 proof or determine if a number
is a prime. In this section, you’ll create a validator that determines whether the input
is divisible by a particular number.

 A validator needs to implement the IValidator interface or, if it wants to validate
null values, the INullAcceptingValidator interface. The INullAcceptingInter-
face is a subclass of IValidator and doesn’t add any extra methods.

 Instead of going bare bones, we’ll use some infrastructure code that is provided by
Wicket. Wicket’s validators all extend AbstractValidator, and this class gives us a
nice jump start for building a custom validator. Listing 6.8 shows how to use the
AbstractValidator to implement the DivisibleValidator.

public class DivisibleValidator extends AbstractValidator {
 private final long n;
 public DivisibleValidator(long n) {
 if (n == 0) throw new IllegalArgumentException("n can't be 0");
 this.n = n;
 }
 @Override
 protected void onValidate(IValidatable validatable) {
 Number value = (Number)validatable.getValue();
 if(value.longValue() % n != 0) {
 error(validatable);
 }
 }
 @Override
 protected String resourceKey() {
 return "DivisibleValidator";
 }
 @Override
 protected Map variablesMap(IValidatable validatable) {
 Map map = super.variablesMap(validatable);
 map.put("divisor", n);
 return map;
 }
}

The AbstractValidator requires us to override the onValidate method. The method
has an IValidatable as a parameter. The IValidatable is the item that is to be vali-
dated, and we can get the value by calling getValue on the validatable. Here we
cast the value directly to a java.lang.Number class and use the converted value to
perform our check. When the number isn’t divisible by N, we call error to inform
the validatable that the validation has failed. Note that the value of N is initialized
in the constructor so that it can be easily configured when using this validator in
the code.

Listing 6.8 Creating a custom validator: DivisibleValidator

Report
errorb

Key for error
message

c

Substitution
variables for
error message

d

166 CHAPTER 6 Processing user input using forms
 The error method registers an error with the validatable and provides it with a
configured IValidationError message b. The IValidationError contains all the
necessary information to construct an internationalized error message based on
Wicket’s resource bundle lookup mechanisms. By default, Wicket uses the class name
as the key to look up the corresponding error message, but you can provide your own
resource key by overriding AbstractValidator’s resourceKey() method in the cus-
tom validator c. Usually, the default implementation is good enough—if you can live
with the default class name, then there is no need to override the method. In our case,
DivisibleValidator is used as the key.

 The error message can contain multiple variables that are substituted by the valida-
tor. You can add your own variables to the default list of "label", "input", and
"name". For instance, the minimum validator for numbers adds the "minimum" substi-
tution variable, replacing ${minimum} in error messages with the value provided to the
validator. In our example, we add the "divisor" substitution key with the value of our
divisor d. Any occurrence of ${divisor} is replaced with the value of our divisor in
the error messages.

 You now have the means to check users’ input and make sure it’s valid. But how can
you communicate the errors of their ways?

6.7 Providing feedback
Nothing is more frustrating than getting a message that an error occurred and having
to restart the process of filling in fields. Until now, we’ve discussed how to get input
from users and how to ensure the data is correct. But we haven’t provided a way to tell
visitors what they did wrong.

 In this section, we’ll show how you can provide your own messages for failed valida-
tions and how to provide flash messages. We’ll also look at the different ways to present
the messages to your visitors. Let’s start with providing feedback messages.

6.7.1 Feedback messages

Wicket comes with many feedback messages in various languages. Some may not be
to your liking; and when you create a custom validator, you’ll need to provide your
own message.

 Feedback messages are provided in resource bundles. There are various ways to store
resource bundles, and the Wicket default is to use property files on the class path. You
can put the bundles several places. In searching for a resource bundle, Wicket starts
looking in the most specific place and searches in more generic places until the
requested resource for the correct locale is found. In more specific cases, the name of
the page or component being rendered is used when attempting to retrieve the
appropriate property file (see table 6.1).

 If you don’t like a message that Wicket provides, and you want to customize it for
your entire application, you have to override it in your application’s resource bundle
by creating a YourApplication.properties file.

167Providing feedback
The most common way to provide your own messages is to create a properties file next
to your page’s markup file: for instance, Index.properties next to Index.html. If you
need more languages, you can append the specific locale information to the filename
(before the extension): for example, Index_nl.properties for the Dutch language or
even Index_nl_BE.properties for the Belgian variation of Dutch. You can learn more
about localization and internationalization in chapter 12.

 The following example shows a form with a couple of required fields and the con-
tents of a properties file where we override Wicket’s required validation message with
something less formal:

/* Index.java */
Form form = new Form("myform");
form.add(new TextField("name").setRequired(true));
form.add(new PasswordTextField("password").setRequired(true));
form.add(new TextField("phonenumber").setRequired(true));

Index.properties
Required=Provide a ${label} or else...
myform.name.Required=You have to provide a name.
password.Required=You have to provide a password.
phonenumber.Required=A telephone number is obligatory.

This example shows a couple of variations of providing alternative feedback messages.
First, we can override the general message identified with the key Required. Next are
a couple of different messages with prefixes before the resource key. Wicket uses com-
ponent paths to give you the option to override the message for a single component.
The message with the most specific path is displayed. For instance, when the text field
with identifier name in the form with identifier myform flags an error, it displays “You
have to provide a name”. This message is chosen over “Provide a name or else...”
because the component path in Index.java matches myform.name.Required, and it’s
more specific than Required.

 As you can see, the resource key of a validator is important when you want to sup-
ply your own validation error messages. Table 6.2 shows the resource keys for all the
validators built into Wicket and the variables that can be substituted in each message.

Table 6.1 Location of feedback messages in the order they’re picked up by the framework

Location next to… Order Description Example

Page class 1 Messages specific to
a page

Index.properties

Index_hu.properties

Component class 2 Messages specific to
a component

AddressPanel_hu.properties

CheckOutForm.properties

Your Application
class

3 Default application-wide
message bundle

CheesrApplication_nl_BE.properties
CheesrApplication_nl.properties

CheesrApplication.properties

Wicket’s Application
base class

4 Default messages
provided by Wicket

Application_nl.properties

168 CHAPTER 6 Processing user input using forms
Table 6.2 A list of the available validators and their resource keys, and provided variables for
creating your own custom messages (or providing messages in a language that isn’t supported
out of the box).

Validator Resource key Variables

Required fields Required label, name

Conversion errors IConverter

IConverter.<type>
label, name, input, type

NumberValidator (surrounding class)

RangeValidator NumberValidator.range label, name, input,
minimum, maximum

MinimumValidator NumberValidator.minimum label, name, input,
minimum

MaximumValidator NumberValidator.maximum label, name, input,
maximum

DoubleRangeValidator NumberValidator.range label, name, input,
minimum, maximum

DoubleMinimumValidator NumberValidator.minimum label, name, input,
minimum

DoubleMaximumValidator NumberValidator.maximum label, name, input,
maximum

StringValidator (surrounding class)

ExactLengthValidator StringValidator.exact label, name, input,
length, exact

LengthBetweenValidator StringValidator.range label, name, input,
minimum, maximum,
length

MaximumLengthValidator StringValidator.maximum label, name, input,
maximum, length

MinimumLengthValidator StringValidator.minimum label, name, input,
minimum, length

DateValidator (surrounding class)

RangeValidator DateValidator.range label, name, input,
minimum, maximum

MinimumValidator DateValidator.minimum label, name, input,
minimum

MaximumValidator DateValidator.maximum label, name, input,
maximum

169Providing feedback
All these standard messages can save you a lot of time writing out (and translating)
your own. But often you need to convey information other than validation errors. For
instance, when an object has been saved to the database, a message like “The changes
to cheese Gouda have been saved” will reassure the user that all is well. To provide
free-form messages, you can use the info, error, and warn methods.

6.7.2 Using the info, error, and warn methods for general messages

All the feedback discussed until now has been part of the form processing. But some-
times you want to notify a visitor that something has happened, such as saving account
information successfully. The following form example displays a message on a new
page (SomePage) shown after the person saved successfully, or an error message (on
the current page) when something went wrong:

add(new Form("form", new Model(person)) {
 @Override
 protected void onSubmit() {
 Person p = (Person)getModelObject();
 try {
 p.save();
 getSession().info(p.getName() + " was saved.");
 setResponsePage(SomePage.class);
 } catch (Exception e) {
 error(p.getName() + " was not saved: " + e.getMessage());
 // do something to rollback the transaction
 }
 }
});

Other validators

CreditCardValidator CreditCardValidator label, name, input

PatternValidator PatternValidator label, name, input,
pattern

EmailAddressValidator EmailAddressValidator label, name, input

UrlValidator UrlValidator label, name, input

EqualInputValidator EqualInputValidator label0, name0,
input0, label1,
name1, input1

EqualPasswordInput-
Validator

EqualPasswordInput-
Validator

label0, name0,
input0, label1,
name1, input1

Table 6.2 A list of the available validators and their resource keys, and provided variables for
creating your own custom messages (or providing messages in a language that isn’t supported
out of the box). (continued)

Validator Resource key Variables

170 CHAPTER 6 Processing user input using forms
There are different levels of severity for this type of messages (also known as flash mes-
sages): information, warning, and error. You can add a message with a specific severity
by calling the corresponding method, as illustrated with the following example:

info("This message is an informative message");
warn("This message is a warning");
error("This message is an error");

These methods are part of the public interface of the Component class. You can call
them anywhere when you have access to a component. You can also call them on a
specific component and use feedback filters to only display those messages (see the
next section for more information on feedback filtering).

 When you want the message to display when the user navigates to a different page,
you should register the messages with the session instead. The next example shows
how to do this:

@Override
protected void onSubmit() {
 // ... do something useful ...
 getSession().info("Is stored until OtherPage is rendered");
 setResponsePage(OtherPage.class);
}

When you want to localize the displayed message, you can use the Component.get-
String method to gain access to the specific message. Here’s how:

/* java */
info(getString("hello"));

properties
hello=Hello, World!

With all these possibilities to generate messages for visitors, we almost forgot to show
you how to display them. Let’s look at displaying feedback messages.

6.7.3 Displaying feedback messages using a FeedbackPanel

Until now, we’ve only shown you how to change Wicket’s feedback messages and how
to provide your own messages outside form processing. Let’s now look at how to dis-
play the messages.

 The easiest way to display feedback messages is to add a FeedbackPanel to your page.
The FeedbackPanel reads the messages from Wicket’s message queue and displays them
with appropriate styling information. The message queue contains messages resulting
from form-validation processing as well as any messages in flash scope supplied to the
session. The feedback panel also lets you filter for certain kinds of messages.

 The following example adds a feedback panel to a page:

<!-- html -->
<div wicket:id="feedback"></div>

/* Java */
add(new FeedbackPanel("feedback"));

171Providing feedback
This simple code catches and displays all feedback messages that are available when
the panel is rendered. The output looks like this:

<ul class="feedbackPanel">
 <li class="feedbackPanelERROR">
 Field 'name' is required.

This markup and style information should give web designers ample possibilities to turn
this simple list into something beautiful (red crosses, warning signs, and so forth). If you
need to override the markup, you can create your own subclass of FeedbackPanel.

 Wicket supplies three feedback message filters for the most common use cases:

■ ComponentFeedbackMessageFilter—Gives only messages for a specific component
■ ContainerFeedbackMessageFilter—Gives only messages for a specific con-

tainer component and its children
■ ErrorLevelFeedbackMessageFilter—Gives only messages at a certain level

(or higher)

For example, if we want to display only messages that are generated for a specific
form, we can apply the ContainerFeedbackMessageFilter to our feedback panel in
the following way:

add(new FeedbackPanel("feedback",
 new ContainerFeedbackMessageFilter(form)));

This feedback panel only shows feedback messages generated by the form and its chil-
dren. Similarly, the ComponentFeedbackMessageFilter only displays the feedback
messages for the assigned component.

 When you want to indicate which form field failed a validation, you can use a Form-
ComponentFeedbackBorder component. The border displays a red asterisk when a vali-
dation message is registered for its form component (you can override the red asterisk
by supplying your own markup). The following snippet shows how to use the border:

<label>SSN:

 <input type="text" wicket:id="ssn">

</label>

form.add(
 new FormComponentFeedbackBorder("border").add(
 new TextField("ssn")));

Note that we add the text field to the border. The border is a component that can ren-
der other components before and after its child components. In this case, it renders
the red asterisk after the text field when a feedback message is registered. Figure 6.13
shows the result.

 Now that you have the ability to display feedback messages, you’ve closed the form-
processing loop: you can receive input, convert and validate it, and tell users what is
wrong so they can fix their input.

172 CHAPTER 6 Processing user input using forms
6.8 Summary
Working with forms is a primary task for most if not all web application developers.
Forms and form-input controls are the main means of gathering input from users. In
this chapter, we continued our discussion of Wicket components by introducing the
Form and the components that capture the user input.

 Forms encapsulate and group input controls and provide a way to convey user
input to the server. Using the get method, you can provide users with a bookmarkable
results page for search queries. Using the post method (Wicket’s default), you can
even upload files to the server and overcome input limits imposed with the get
method. To prevent the nefarious popup, when a user revisits a page generated by a
post submission, Wicket uses the redirect after post pattern. You’ve learned how to
submit a form using buttons and links. We showed how to use Ajax to submit a form
and how to disable form processing when you don’t want the input to be validated or
propagated to your domain objects.

 Using text fields, radio buttons, check boxes, and drop-down boxes, you can pro-
vide users with a variety of input controls. Although controls provide basic insurance
that the data is in good shape, you should check the input before you send it to the
domain layer. Wicket validation is a multistep process that checks the availability of
input, converts the input, and validates the converted input before propagating it to
the domain layer. Only when all supplied input is valid is the input transferred to the
domain layer.

 Providing feedback to users is just as important: it’s frustrating to see something
fail without knowing why. When any input is invalid or missing, processing stops, and
the failed validations generate error messages. A feedback panel will show the feed-
back messages in the user’s language.

 In the next chapter, we’ll look at how to compose pages by grouping components.

SSN: 1234 *

 1234 is not a valid social security
 number

indicator

feedback panel

Figure 6.13

The FeedbackPanel and
FormComponentFeedbackBorder
components working together to give
the user a clear message about which
component has invalid input

Composing your pages
One of the biggest challenges of designing and building a lasagna is to create as
many layers as you can possibly fit in the baking dish, without turning the lasagna in
one giant noodle. Years of empiric research have shown that the best lasagna has
between five and seven layers. According to our recipe, this means stacking a thin
layer of sauce, a couple of salami slices, cheese slices, a thin layer of spinach, and
a layer of lasagna noodles on top of each other, and repeating until the only thing
we have room for on top is a thin layer of sauce.

 The secret to a great lasagna lies in how thick you make each layer and how you
distribute the ingredients. The thickness of the layers and the careful distribution
of the ingredients make the difference between a solid, perfect slice of lasagna that
stands on your plate ready to be cut to pieces, and a lasagna that turns into Italian
soup when you dish it up.

In this chapter:
■ Grouping components with

WebMarkupContainers, Panels, and Fragments
to maximize reuse

■ Creating consistent, maintainable layouts with
markup inheritance and panel replacement
173

174 CHAPTER 7 Composing your pages
 The same applies to building Wicket applications: the way you group and distrib-
ute the components on and across your pages determines whether your application
can stand the test of time and be maintainable, even for guest developers. For
instance, while building the cheese store in chapter 3, you saw that it’s easy to create a
reusable shopping cart panel and save yourself from writing duplicate code.

 Grouping components in reusable units is only part of the equation. The way you
distribute them across your pages is the other part. In this chapter, we’ll explore the
options available for grouping and distributing our components to maximize reuse
and minimize maintenance costs. We’ll start with grouping components and work our
way up to composing pages.

7.1 Grouping components
One of the major benefits of using Wicket is that you can create component hierar-
chies in which you can nest components at will. This gives you control over how your
pages are composed and what elements are visible and active. In this section, we’ll
look at how to group components and how to make them reusable across pages. Fig-
ure 7.1 gives an outline of the options available to group components.

 This figure shows the following options:

■ No grouping
■ Grouping using a WebMarkupContainer
■ Grouping using a Panel
■ Grouping using a Fragment

This section will build on the two labels visible in figure 7.1. The example in listing 7.1
shows the markup and Java code for the page without any grouping. The two labels
contain quotes from the “Big Cheese” episode of the cartoon Dexter’s Laboratory.

Page

label1

label2

none

Page

label1

label2

WebMarkup
Container

Page

fragment

label1

label2

FragmentPanel

Page

Panel

label1

label2

Figure 7.1 The different ways to group components: no grouping; or using a web markup container, a
panel, or a fragment. The panel requires its own class and HTML file, whereas the fragment is embedded
in the page’s markup and class.

175Grouping components
<html>
<body>
 <blockquote wicket:id="dexter"></blockquote>
 <blockquote wicket:id="deedee"></blockquote>

</body>
</html>

public class GroupingPage extends WebPage {
 public GroupingPage() {
 add(new Label("dexter", "Omelette du fromage"));
 add(new Label("deedee", "That's all you can say!"));
 }
}

As you can see, we attach the labels directly to the blockquote elements. You may
remember from chapter 6 that the Label component isn’t picky about the tags it’s
attached to, and we take advantage of that feature here.

 We’ll use this example as a basis for the coming sections, where we’ll group the
labels using the techniques from figure 7.1. Let’s start with grouping components
using a WebMarkupContainer.

7.1.1 Grouping components on a page: WebMarkupContainer

Wicket lets you create component hierarchies by nesting components, putting them
inside one another. This grouping of related components allows you to perform com-
mon actions on the group as a whole. Examples of such actions are hiding or showing
the components, repainting a section on a page using Ajax, and replacing all compo-
nents with new components.

 The WebMarkupContainer is well suited for this kind of use because it only
attaches itself to the markup tags and doesn’t modify them unless you tell it to by
using behaviors or by overriding onComponentTag or onComponentTagBody. The Web-
MarkupContainer lets you add child components without limits, making it ideal for
grouping components.

 Listing 7.2 groups the two labels using a WebMarkupContainer.

<html>
<body>
<div wicket:id="group">
 <blockquote wicket:id="dexter">[label1]</blockquote>
 <blockquote wicket:id="deedee">[label2]</blockquote>
</div>
</body>
</html>

public class GroupingPage extends WebPage {
 public GroupingPage() {

Listing 7.1 A page with two labels and no grouping

Listing 7.2 Grouping labels using a WebMarkupContainer

Group labels
(HTML)

b

176 CHAPTER 7 Composing your pages
 WebMarkupContainer group = new WebMarkupContainer("group");
 add(group);
 group.add(new Label("dexter", "Omelette du fromage"));
 group.add(new Label("deedee", "That's all you can say!"));
 }
}

We introduce a div in the markup to group the two labels b. Because Wicket
requires a one-to-one match between the components in the markup and the Java
hierarchy, we need to provide additional markup and an additional component c to
group the labels. In this example, we create a new instance of a WebMarkupContainer
to act as our grouping component. By adding the labels to the group component, we
create the necessary component hierarchy that mirrors the component structure in
the markup file.
USING THE GROUP AS A WHOLE

Now that we’ve defined our group of components, we can use the group as a whole.
As an example, we’ll add a link to the page that shows and hides the group:

public GroupingPage() {
 final WebMarkupContainer group = new WebMarkupContainer("group");
 add(group);
 group.add(new Label("dexter", "Omelette du fromage"));
 group.add(new Label("deedee", "That's all you can say!"));

 add(new Link("link") {
 @Override
 public void onClick() {
 group.setVisible(!group.isVisible());
 }
 });
}

In this example, we only call setVisible on the group component. This is sufficient
to hide the group and all its child components.

 We can also hide and show the group using Ajax:

public GroupingPage() {
 final WebMarkupContainer group = new WebMarkupContainer("group");
 add(group);
 group.add(new Label("dexter", "Omelette du fromage"));
 group.add(new Label("deedee", "That's all you can say!"));

 group.setOutputMarkupPlaceholderTag(true);
 add(new AjaxFallbackLink("link") {
 @Override
 public void onClick(AjaxRequestTarget target) {
 group.setVisible(!group.isVisible());
 if(target != null) {
 target.addComponent(group);
 }
 }
 });
}

Group labels (Java) c

Ensure Ajax
operabilityb

Check Ajax
availabilityc

177Grouping components
We ensure that the group can be updated by telling it to output a placeholder tag b
when it’s hidden (see section 6.6 for more information). The Ajax link we use in this
example is a fallback link that works even in browsers that don’t support Ajax or Java-
Script. So, we need to check whether the request is an Ajax request c.

 We just demonstrated the basic recipe for performing partial updates of pages. In
this example, we not only toggled the visibility, we also updated the contents of the
container. If you modify the contents of a label to display the current time, you’ll see it
update with each refresh.

 How does the WebMarkupContainer help when you want to reuse a group of
components?
REUSING THE GROUP OF COMPONENTS

One of the ideals of component-oriented development is to create reusable components.
Although the WebMarkupContainer is a perfect starting point for developing your own
custom components (Wicket uses this container as a base to create many of the core com-
ponents), it isn’t suited to create reusable groups of components. This section illustrates
why the WebMarkupContainer isn’t a good fit to create reusable groups of components.

 In listing 7.2, we created a new instance of the WebMarkupContainer. If you have
larger groups of components, it makes sense to create a custom class to prevent copy/
paste programming. The next example turns our container with its labels into a cus-
tom, self-contained class that extends WebMarkupContainer:

public class GroupingPage extends WebPage {
 public class LabelsGroup extends WebMarkupContainer {
 public LabelsGroup(String id) {
 super(id);
 add(new Label("dexter", "Omelette du fromage"));
 add(new Label("deedee", "That's all you can say!"));
 }
 }
 public GroupingPage() {
 add(new LabelsGroup("group"));
 }
}

Here we clean up the code within the constructor of the GroupingPage page consider-
ably by creating a custom LabelsGroup class for the group. Because the LabelsGroup
is a normal Java class, we can add properties and methods and do anything we’d nor-
mally do when building Java classes. You can even move such a custom class to a top-
level class in its own file, but you’ll run into problems if you do so unprepared.

 If you move a custom class like LabelsGroup to its own Java file, you may feel
tempted to use the component on another page as well. There is no law against doing
so, and Wicket doesn’t prohibit it, so let’s see where it leads. Assuming that the
LabelsGroup class is now in its own file, we can use it on another page; let’s call the
page SecondGroupingPage. The following example shows how:

public class SecondGroupingPage extends WebPage {
 public SecondGroupingPage() {

Group
class

Group
instance

178 CHAPTER 7 Composing your pages
 add(new LabelsGroup("group"));
 }
}

We create a new instance of the LabelsGroup component and add it to the page. This
is nothing special, and we don’t have any problems yet. How does the markup look?
Here’s the SecondGroupingPage.html file:

<html>
<body>
<div wicket:id="group">
 <blockquote wicket:id="dexter">[label1]</blockquote>
 <blockquote wicket:id="deedee">[label2]</blockquote>
</div>
</html>

In this file, we have to copy the markup from the GroupingPage.html file shown in
listing 7.1 and match it exactly with respect to the component structure. We could add
extra markup or extra components (we’d have to remember to add them to the Java
structure as well). But at least the dexter and deedee labels must be present in the
markup and should be inside the div tags of our group component.

 What happens when we (or someone else) change the structure of the Labels-
Group component—for instance, by adding a label or link? Then we have to change
both GroupingPage.html and SecondGroupingPage.html. This is a violation of the
DRY principle: we broke the encapsulation of the LabelsGroup component by moving
the Java code to its own file, but not the markup. If we could also move the markup to
its own file, then we would only have to change that markup—all pages that used the
LabelsGroup component would automatically use the new markup.

 The WebMarkupContainer is an interesting basis for creating custom components,
and it’s well suited for creating group components that act as a whole. But you shouldn’t
reuse a group of components created by a WebMarkupContainer, because you’d need to
duplicate the markup everywhere it’s used. This is where panels come in handy.

7.1.2 Reusing grouped components by creating a Panel

A Panel component is a WebMarkupContainer with its own markup file associated with
it (just like a page). When you use a panel in a page, the content of the panel’s
markup file is inserted within the component tags in the page where the panel is
attached. Just like a page, a panel’s markup file has to have the same, case-sensitive
filename as the Java class (with the extension .html). Before we convert our running
example into a panel, let’s take a closer look at the panel itself.

 Let’s start with an example that illustrates most of the concepts of a typical panel:

<html>
<head>
<wicket:head>
 <wicket:link>
 <link href="ExamplePanel.css" rel="stylesheet" />
 </wicket:link>

Exact copy from
GroupingPage.html

Add to page’s
head section

b
Link to
stylesheet
on classpath

c

179Grouping components
</wicket:head>
</head>
<body>
<h1>Example Panel</h1>
<p>This panel is an example of Wicket's panels.</p>
<wicket:panel>
 <h3 wicket:id="title"></h3>
</wicket:panel>
</body>
</html>

This markup consists of two parts: the head and the panel. The head (identified by
the wicket:head tags b) is added to the page’s head section where the panel is used.
In this case, we add an auto-link to a stylesheet that is in the same directory as our
markup on the classpath c. The wicket:link creates the correct link to this
resource. We can open the panel’s markup and preview it in a browser. This is an easy
and convenient way to add links to resources used locally for your components. The
coming chapters will further discuss custom components and working with resources.

 The body (the part between the wicket:panel tags d) is rendered at the position
where you use the panel. All markup that is outside the wicket:panel tags doesn’t
appear in the final markup when the page containing the panel is rendered. We can
freely add extra markup and text to this file, as long as it’s outside the panel tags.

 Before we can use the panel, we should create a Java class to go with the markup:

public class ExamplePanel extends Panel {
 public ExamplePanel(String id) {
 super(id);
 add(new Label("title", "Example Panel"));
 }
}

The Java class for the panel isn’t difficult to understand: we extend Wicket’s Panel
class and, in the constructor, add our components to the panel. Using our example
panel is as simple as adding to the page and creating and adding the component in
the appropriate location:

<!-- ExamplePage.html -->
<html>
<body>
 <div wicket:id="panel">this gets replaced</div>
</body>
</html>

/* ExamplePage.java */
public class ExamplePage extends WebPage {
 public ExamplePage() {
 add(new ExamplePanel("panel"));
 }
}

When we run this example it produces the following markup:

<html>
<head>

Get included
when used

d

180 CHAPTER 7 Composing your pages
 <link href="[some path]/ExamplePanel.css" rel="stylesheet" />
</head>
<body>
 <div>
 <h3>Example Panel</h3>
</div>
</body>
</html>

Our example panel is used in the page, and its markup is inserted inside the div tags
associated with the panel. The contents of the div tags in our page are replaced with the
contents of the panel’s wicket:panel tags: the “this gets replaced” text is gone from the
final markup. Also note that the markup outside the wicket:panel tags in our panel
markup file is gone: only the content inside the wicket:panel tags is used. The stylesheet
reference we included in the head section is added to the final markup of our page, mak-
ing any styles defined in our panel available to the included panel content. Wicket’s
header-contribution mechanism makes this possible; it’s discussed in detail in chapter 8.

 Armed with this fresh knowledge about panels, let’s return to the omelette du fromage
example from listing 7.1 and move the quote labels into a panel. Listing 7.3 shows the
resulting markup and code for the converted group.

<html>
<body>
<wicket:panel>
 <blockquote wicket:id="dexter">[label1]</blockquote>
 <blockquote wicket:id="deedee">[label2]</blockquote>
</wicket:panel>
</body>
</html>

public class LabelsGroup extends Panel {
 public LabelsGroup(String id) {
 super(id);
 add(new Label("dexter", "Omelette du fromage"));
 add(new Label("deedee", "That's all you can say!"));
 }
}

In the markup, we omit the outer div that grouped the labels in listing 7.2. This extra
tag isn’t necessary in our panel because it’s provided by the page that uses this panel.
But sometimes it can be helpful to group components on a panel using a markup con-
tainer—for instance, when you’re building Ajax-enabled components. Nothing pre-
vents you from doing so.

 How does this look when you want to use the group component in a page? Let’s adjust
GroupingPage to use our new panel. The following example shows what’s left of the page:

<html>
<body>
<div wicket:id="group"></div>

Listing 7.3 LabelsGroup converted to a panel

181Grouping components
</body>
</html>

public class GroupingPage extends WebPage {
 public GroupingPage() {
 add(new LabelsGroup("group"));
 }
}

What’s interesting in this example is that the labels and their markup are invisible in
the page’s markup and Java code. All we know is that we’re using a LabelsGroup com-
ponent; we attach it to a div tag without having to know anything about the markup’s
internals. This is the major advantage of using panels: they hide their implementation
details from their users.

NOTE Should you use div or span tags to attach a panel? You can use any tag to
attach a panel: td, form, or p. The panel is forgiving in that regard. But
browsers tend to like standards-compliant documents much more than
invalid documents, especially when it comes to replacing parts of the doc-
ument using Ajax, or traversing the DOM in JavaScript. We advise you to
use the correct tag for the context in which you want to put your panel,
and to do so you’ll need to study the (X)HTML specification.

Another advantage is that you can replace one panel with a different one without get-
ting into trouble. We modify not only the component hierarchy on the Java side, but
also the markup hierarchy by providing the panel’s alternative markup. This makes
the component hierarchy consistent with the markup again.

 Consider Wicket’s EmptyPanel: the panel, being empty (hence the name), is typi-
cally used to occupy a spot and is replaced by a panel that gives users more functional-
ity. When clicked, the link implementation in the following example swaps our
grouping panel with the empty panel and vice versa:

public class GroupingPage extends WebPage {
 private Component group;
 public GroupingPage() {
 group = new LabelsGroup("group");
 add(group);
 add(new Link("swap") {
 private Component alternate = new EmptyPanel("group");
 @Override
 public void onClick() {
 Component temp = group;
 group.replaceWith(alternate);
 group = alternate;
 alternate = temp;
 }
 });
 }
}

When you run this example, you can see that we swap the LabelPanel made up of two
labels with the EmptyPanel that doesn’t have any child components. Here we modify the

182 CHAPTER 7 Composing your pages
component hierarchy in a drastic way, and we don’t get an error. It’s worth mentioning
that the component identifier must be the same when we replace a panel with another;
as you can see in this example, the EmptyPanel is also given the identifier group.

 Panels are versatile and do a good job of grouping and reusing components, even
across pages. But they require a lot of work: you have to create a separate Java class
and markup file. If you don’t want to reuse the grouped components in other pages,
but you do need to modify the hierarchy in a single page, you can use fragments.

7.1.3 Grouping components using fragments

Fragments are basically inline panels. They behave the same as panels, but their associ-
ated markup resides in the markup of the page (or panel) where they’re defined and
used. Fragments can’t be reused outside the page where they were defined, but
they’re intended for a different purpose. They’re a convenience for those moments
when you’d have to create panels if fragments didn’t exist. Let’s see what fragments
look like and how you can use them.

 In the following example, we group the Label components inside the Fragment class:

public class GroupingPage extends WebPage {
 public class LabelsFragment extends Fragment {
 public LabelsFragment(String id) {
 super(id, "fragment", GroupingPage.this);
 add(new Label("dexter", "Omelette du fromage"));
 add(new Label("deedee", "That's all you can say!"));
 }
 }
 public GroupingPage() {
 add(new LabelsFragment("group"));
 }
}

This looks similar to the Panel component. There are two differences: we extend
from Fragment, and the call to the super fragment constructor takes extra parameters:
the markup identifier and a reference to the markup container that contains the frag-
ment’s markup. The purpose of this identifier becomes clear when we look at the
markup for this page in the following snippet. The container is necessary because
otherwise Wicket wouldn’t know where to find the fragment’s markup in the file:

<html>
 <body>
 <div wicket:id="group"></div>
 </body>
 <wicket:fragment wicket:id="fragment">
 <blockquote wicket:id="dexter"></blockquote>
 <blockquote wicket:id="deedee"></blockquote>
 </wicket:fragment>
</html>

In b we use the fragment just as we’d use a panel. The special Wicket tag wicket:
fragment demarcates the part of the page where the fragment’s markup can be

Use
fragment

b

Define fragment
markup

c

183Page composition: creating a consistent layout
found c. The fragment is identified by a markup identifier, just like the component.
This markup identifier corresponds to the second identifier of the fragment construc-
tor. The fragment needs its own markup identifier because you can create multiple frag-
ments on the page; the identifier makes it possible to distinguish the various fragments.

 This example explains the basic usage pattern for fragments. They’re most com-
monly used in highly dynamic pages. Suppose you have to show a list of contacts, but
you need to render different markup depending on the relationship with the contact
(a friend might show more information than an acquaintance). In this case, a frag-
ment may be useful, especially if the rendering of the contact information is local to
that page. If the contact information will be used in other pages of your application,
you should consider creating panels instead.

 Table 7.1 provides a summary of the grouping options discussed in this section.

Now that you’ve learned to group components into reusable parts, let’s go up the lad-
der and see how to create reusable page structures that cut back even more on the
copy/paste approach to programming.

7.2 Page composition: creating a consistent layout
When discussing the cheese store in chapter 3, we didn’t pay much attention to creat-
ing a consistent layout for all the pages. We did make both pages look the same, at the
expense of duplicating all the common layout markup and components across all
pages. In this section, we’ll look at options to make pages more maintainable by
reducing this duplication and keeping things organized. You can compose pages
three ways (these approaches aren’t mutually exclusive):

■ Using plain pages —Copy the common components from one page to another.
■ Using markup inheritance —Move the common bits of your pages to a base class,

including the markup, and let concrete pages provide the custom portion.

Table 7.1 The different component grouping mechanisms and when to use them

Grouping Description When to use

WebMarkupContainer Groups components directly in
the markup and Java code. No
extra files are necessary.

When the grouped components aren’t
reusable, but they need to act together
for Ajax updates or visibility changes.
This approach is also helpful to modify
attributes of a markup tag.

Panel Groups components in a
separate markup file and
Java class.

When the grouped components are to
be reused in different pages, or contri-
butions to the header are necessary.

Fragment Groups components in a sepa-
rate component hierarchy out-
side the normal hierarchy, but
inside the markup file. Also
known as an inline panel.

When the grouped components are
inherent to the page/panel they’re
part of and aren’t reusable in other
pages/panels.

184 CHAPTER 7 Composing your pages
■ Using panels —Use a single page that contains the common markup and has a
panel for the main content. Depending on the actions, the main content panel
can be swapped with other panels to show different content.

In this section, we’ll discuss these strategies in their pure forms to make a clear distinc-
tion between them. But you can combine the strategies: for example, you can use pan-
els inside panels, or use panels inside a markup-inherited page, or apply markup
inheritance to panels. For now, we’ll keep things simple. First, we’ll look at how to
build an application the traditional way using plain pages.

7.2.1 Creating consistent layouts using plain pages

Building applications using plain pages is the approach we’ve discussed so far in this
book. Each page focuses on doing one thing: showing a list of cheeses, ordering
cheeses, and so forth. The pages don’t contain shared elements like a navigational
menu. Let’s look at an example that includes two pages and uses the plain-pages
approach. Figure 7.2 shows the general layout of the pages we’ll construct in the com-
ing sections.

Each page should display (for now) two menu items: Cheeses and Recipes. When the
user selects one menu item, the corresponding page (CheesesPage or RecipesPage)
is displayed.

 Let’s first build the CheesesPage using plain pages. Listing 7.4 shows the markup.

<html>
<head>
 <title>Cheesr - we make cheese taste beta</title>
 <link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="container">

Listing 7.4 CheesesPage markup using the plain pages approach

CheesesPage

Cheeses

Cheeses Recipes

RecipesPage

Recipes

Cheeses Recipes

Shopping
cart

Shopping
cart

Figure 7.2 The layout of the Cheeses page and the Recipes page. The basis of this
example comes from chapter 3; we added the top menu to let users switch between
the two pages. Notice that the shopping cart is present on both pages.

185Page composition: creating a consistent layout
 <div id="header">
 <h1>Cheesr</h1>
 </div>
 <div id="contents">
 <wicket:link>
 Cheeses
 Recipes
 </wicket:link>
 <div id="main">
 <div wicket:id="cheeses">
 <h3 wicket:id="name"></h3>
 <p wicket:id="description"></p>
 </div>
 </div>
 <div wicket:id="cart" id="cart"></div>
 </div>
</div>
</body>
</html>

The markup for the Cheeses page has three interesting parts. The menu is present on
all pages, which means duplicating this markup. The list of cheeses is specific to this
page and isn’t repeated on other pages (although the structure may be similar).
Finally, the shopping cart is present on each page, so it must be duplicated as well.
Let’s look at the Java code for this page:

public class CheesesPage extends WebPage {
 public CheesesPage() {
 List<Cheese> cheeses = /* get cheeses */
 Cart cart = /* get cart */
 add(new PropertyListView("cheeses", cheeses) {
 @Override
 protected void populateItem(ListItem item) {
 item.add(new Label("name"));
 item.add(new MultiLineLabel("description"));
 }
 });
 add(new ShoppingCartPanel("cart", cart));
 }
}

In this class, all we have to do is add the list of cheeses with its two labels as our repeat-
ing contents, and add the shopping-cart panel. Wicket autogenerates the menu using
the wicket:link tags.

 Now that we have a finished Cheeses page, let’s look at the Recipes page. The
markup for this page is listed in listing 7.5.

<html>
<head>
 <title>Cheesr - we make cheese taste beta</title>
 <link rel="stylesheet" href="style.css" />
</head>

Listing 7.5 RecipesPage markup using the plain pages approach

Menu
links

Main
section

Shopping
cart

186 CHAPTER 7 Composing your pages
<body>
<div id="container">
 <div id="header">
 <h1>Cheesr</h1>
 </div>
 <div id="contents">
 <wicket:link>
 Cheeses
 Recipes
 </wicket:link>
 <div id="main">
 <div wicket:id="recipes">
 <h3 wicket:id="name"></h3>
 <p wicket:id="serves"></p>
 <h4>Ingredients<h4>

 <li wicket:id="ingredients">

 <p wicket:id="instructions"></p>
 </div>
 </div>
 <div wicket:id="cart" id="cart"></div>
 </div>
</div>
</body>
</html>

This is exactly the same markup as for the Cheeses page, except for the main section.
Now let’s look at the Java class for this page:

public class RecipesPage extends WebPage {
 public RecipesPage() {
 List<Recipe> recipes = /* get recipes */
 Cart cart = /* get cart */
 add(new PropertyListView("recipes", recipes) {
 @Override
 protected void populateItem(ListItem item) {
 item.add(new Label("name"));
 item.add(new Label("serves"));
 RepeatingView view = new RepeatingView("ingredients");
 item.add(view);
 for(String ingredient : recipe.getIngredients()) {
 view.add(new Label(view.newChildId(), ingredient));
 }
 item.add(new MultiLineLabel("instructions"));
 }
 });
 add(new ShoppingCartPanel("cart", cart));
 }
}

The RecipesPage class looks almost identical to the CheesesPage class. We change
some identifiers and implement the list view a bit differently, but that’s it. The menu
(in the markup) and the shopping cart are the same. If we fire up our application in
the browser, we see something like the screenshots in figure 7.3.

Menu
links

Main
section

Shopping
cart

187Page composition: creating a consistent layout
Using the plain-pages technique, we created our pages’ markup, added components,
and provided the links between the pages to navigate the site. We’ve duplicated a lot
of markup and code in our pages. Now imagine that we have to add a new page and
provide a link to it. Then, consider doing this for a 500+ page website with the current
setup. Fortunately, several options are available to mitigate this maintenance night-
mare. Let’s see how we can improve this approach by using inheritance.

7.2.2 Creating consistent layouts using markup inheritance

In programming languages, one benefit of using object orientation is the ability to
share common code using inheritance. Even though inheritance can (and will) be
misused, it’s a powerful construct. Because you can create common component hier-
archies for your pages and components, this question pops up: “How do I keep my
markup under control?” Enter markup inheritance. This Wicket feature lets you cre-
ate a markup hierarchy that mirrors your class hierarchy, as illustrated in figure 7.4.

Figure 7.4 proposes a common base class for your page and that concrete pages
inherit from the base. Let’s see how this works in listing 7.6, which shows the HTML
and Java code for the base page.

<html>
<head>
 <title>Cheesr - we make cheese taste beta</title>

Listing 7.6 BasePage markup and Java code using markup inheritance

Cheeses Recipes

Parmesan
Parmesan cheese is made from raw cow's
milk. Uses of the cheese include being
grated with a grater over pasta, stirred into
soup and risotto, and eaten in chunks with
balsamic vinegar. It is also a key
ingredient in alfredo sa ce and pesto

Cheeses Recipes

Lasagna Bolognese
(6-8 persons)
Ingredients
1/4 cup extra-virgin olive oil, 2 medium
onions, finely chopped, 1 carrot, finely
chopped, 4 stalks celery, finely chopped, 5
clo es garlic sliced 1 po nd eal gro nd

Brie
Buxton Blue
Parmesan
Camembert
Emmental
T t l

$3.15
$0.99
$1.99
$1.69
$2.39

remove
remove
remove
remove
remove

Your Selection
Brie
Buxton Blue
Parmesan
Camembert
Emmental
Total

$3.15
$0.99
$1.99
$1.69
$2.39

remove
remove
remove
remove
remove

Your Selection

Figure 7.3 Screenshots from the Cheeses and Recipes pages

BasePage

ConcretePage1 ConcretePage2

BasePage.html

Concrete
Page1.html

Concrete
Page2.html

Figure 7.4

Markup inheritance
enables an inheritance
hierarchy in your markup
as well as your Java
classes.

188 CHAPTER 7 Composing your pages
 <link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="container">
 <div id="header">
 <h1>Cheesr</h1>
 </div>
 <div id="contents">
 <wicket:link>
 Cheeses
 Recipes
 </wicket:link>
 <div id="main">
 <wicket:child />
 </div>
 <div wicket:id="cart" id="cart"></div>
 </div>
</div>
</body>
</html>

public abstract class BasePage extends WebPage {
 public BasePage() {
 Cart cart = /* get cart */
 add(new ShoppingCartPanel("cart", cart));
 }
}

The base page contains the components common to all pages: in this case, the menu,
the shopping cart, and the supporting markup. Take a closer look at the markup for
BasePage, and you’ll see that we introduce a special Wicket tag: wicket:child. This
tag tells Wicket where to include the markup of the child page: in this example, the
list views that display the cheeses and the recipes.

 Let’s look next at how to create the Cheeses and Recipes pages. Listing 7.7 shows
the refactored Cheeses page.

<html>
<body>
<wicket:extend>
 <div wicket:id="cheeses">
 <h3 wicket:id="name"></h3>
 <p wicket:id="description"></p>
 </div>
</wicket:extend>
</body>
</html>

public class CheesesPage extends BasePage {
 public CheesesPage() {
 List<Cheese> cheeses = /* get cheeses */
 add(new PropertyListView("cheeses", cheeses) {
 @Override

Listing 7.7 CheesesPage markup and Java code using markup inheritance

Menu
links

Main
section

Shopping
cart

Child
markup

b

Inherit from
BasePage

c

189Page composition: creating a consistent layout
 protected void populateItem(ListItem item) {
 item.add(new Label("name"));
 item.add(new MultiLineLabel("description"));
 }
 });
 }
}

We introduce another new Wicket tag: wicket:extend b. These tags are like the
wicket:panel tags: Wicket doesn’t use anything outside them. Here, the wicket:
extend tags demarcate the area that is used in the parent’s <wicket:child /> tag.
Instead of extending WebPage, we now extend from our common base class BasePage
c. By moving the common markup and the common components to our base page,
we’re able to clean up our Cheeses page considerably. It now contains only the
markup and components directly associated with its purpose. We leave implementing
the RecipesPage using markup inheritance as an exercise for you.

 Markup inheritance also works with multiple layers. You can nest a wicket:child
tag inside your wicket:extend tags and create hierarchies of common, layered lay-
outs. You can also let your subpages contribute markup such as CSS or JavaScript refer-
ences to the header of the page by using the wicket:head tags we discussed earlier.
Anything inside the wicket:head tags is included in the final page.
WRAPPING A COMPONENT AROUND THE CHILD MARKUP

When you define a component—for instance, a WebMarkupContainer or a Form—and
you want to wrap it around the child area, you get into trouble. In other words, when you
nest the child area within a tag attached to a Wicket component, the child pages add
their components to the page, not to the wrapper around the child area. This causes
an inconsistency in the component hierarchy, and Wicket shows an error instead of
your page. Listing 7.8 provides a concrete example of this problem.

<!-- BasePage.html -->
<html>
<body>
<div wicket:id="wrapper"><wicket:child /></div>
Refresh
</body>
</html>

/* BasePage.java */
public class BasePage extends WebPage {
 private WebMarkupContainer wrapper;
 public BasePage() {
 wrapper = new WebMarkupContainer("wrapper") {
 @Override
 public boolean isTransparentResolver() {
 return true;
 }
 };
 wrapper.setOutputMarkupId(true);

Listing 7.8 Base page wrapping a WebMarkupContainer around the child page

Wrap around
child markup

Resolve missing
children from
siblings

b

190 CHAPTER 7 Composing your pages
 add(wrapper);
 add(new AjaxFallbackLink("refresh") {
 @Override
 public void onClick(AjaxRequestTarget target) {
 if(target != null) {
 target.addComponent(wrapper);
 }
 }
 });
 }
}

<!-- ChildPage.html -->
<wicket:extend>
Nr of refreshes:
</wicket:extend>

/* ChildPage.java */
public class ChildPage extends BasePage {
 private int nr = 0;
 public ChildPage() {
 add(new Label("nr", new PropertyModel(this, "nr")));
 }

 public int getNr() {
 return nr++;
 }
}

The BasePage in this example shows a link to update the main contents using Ajax. To
update the main content embedded in the subclasses of our base page, we wrap the
wicket:child tag with a WebMarkupContainer. In the ChildPage, we specify a label
that increments its value each time it’s accessed via the getNr method. The label is
added to the child page, not the wrapping markup container. Adding the label to the
page violates the component hierarchy as we set it up in the markup.

 So, we need to add the label to the wrapper, which means exposing the wrapper to
all the child pages, perhaps as a protected variable. Each child page will then be
responsible for adding its components to the wrapper instead of the page. Take, for
instance, the following replacement for the ChildPage’s constructor:

public ChildPage() {
 wrapper.add(new Label("nr", new PropertyModel(this, "nr")));
}

Needless to say, this approach is error prone: it’s natural to add components to the
page instead of some mysterious object defined in a superclass. Instead of taking this
route, we can make the wrapping WebMarkupContainer a transparent resolving compo-
nent b. Such components will resolve components that are added to the transparent
resolver’s parent, but are defined inside the transparent resolver’s markup. In other
words: when components are added to the parent of a transparent resolver, they can
be automatically attached to the transparent resolving component instead. For exam-
ple, the following markup transparently resolves the foo1 and foo2 components to be
inside the bar’s markup:

Become
wrapper’s child

Become
page’s child

191Page composition: creating a consistent layout
<ul wicket:id="bar">
 <li wicket:id="foo1">
 <li wicket:id="foo2">

add(new WebMarkupContainer("bar") {
 @Override
 public boolean isTransparentResolver() {
 return true;
 }
});
add(new Label("foo1", "Hello, World!"));
add(new Label("foo2", "How are we doing?"));

We add the foo1 and foo2 labels to the parent of the container bar. Normally, this
would generate an error because the component hierarchy doesn’t match the hierar-
chy in the markup. But because we made the container into a transparent resolver, the
container looks for its missing children (according to the markup) among its siblings.

 With markup inheritance, you instantly get more maintainable pages. The base
page provides the framework for the subpages in the markup and adds common
components. Each subpage only has to add the components it needs to provide its
unique functionality.

 This concludes our demonstration of the second strategy to compose pages. Let’s
look at the final option: using panels.

7.2.3 Creating consistent layouts using panels

In the previous sections, we used different page classes to display different content: a
page for cheeses and a page for recipes. But there is another way to maintain a consis-
tent layout using a single page. In this scenario, you swap parts of the page with new
content using panels. Figure 7.5 shows how this works for our example.

 To convert our running example into a single page that swaps panels, we need to
do some work. First, we must create the two panels that contain our cheeses and reci-
pes. Creating these panels is left to you. Armed with the knowledge from section 7.1

Recipes

Brie
Buxton Blue
Parmesan
Camembert
Emmental
T t l

$3.15
$0.99
$1.99
$1.69
$2.39

remove
remove
remove
remove
remove

Your Selection

Parmesan
Parmesan cheese is made from raw cow's
milk. Uses of the cheese include being
grated with a grater over pasta, stirred into
soup and risotto, and eaten in chunks with
balsamic vinegar. It is also a key
ingredient in alfredo sa ce and pesto

Lasagna Bolognese
(6-8 persons)
Ingredients
1/4 cup extra-virgin olive oil, 2 medium
onions, finely chopped, 1 carrot, finely
chopped, 4 stalks celery, finely chopped, 5
clo es garlic sliced 1 po nd eal gro nd

Cheeses

main
content

RRRRRRecipespp

P
m
g
s
b

esssss p

Brie
Buxton Blue
ParmParmarmarmmParmmParmParmParmPParmParrmmesanesanesaesaesaesaesanneesanesann
Camembert

$3.15
$0.99
$1 9$1 9$1 9$1 9$1 9$1 99$1.9.99999999
$1.69

remove
remove
remomoemoremoremoemoremoveveveveveveve
remove

YourYY Selectionr
ii

L
(
I
1
o

mmainmmainn n
conconntenteentent

pesp
ii

selects

selects

Figure 7.5 Swapping the main content using panels. When the user clicks the Cheeses link,
the main content is replaced with the Cheeses panel. The Recipes link replaces the main
content with the Recipes panel.

192 CHAPTER 7 Composing your pages
and the CheesesPage example markup and Java code from the previous section, you
shouldn’t find it difficult to convert those pages into panels.

 Next, we need to create the single page. Listing 7.9 shows the markup and Java code.

<html>
<head>
 <title>Cheesr - we make cheese taste beta</title>
 <link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="container">
 <div id="header">
 <h1>Cheesr</h1>
 </div>
 <div id="contents">
 Cheeses
 Recipes
 <div wicket:id="main" id="main"></div>
 <div wicket:id="cart" id="cart"></div>
 </div>
</div>
</body>
</html>

public class CheesrPage extends WebPage {
 private Panel cheesesPanel = new CheesesPanel("main");
 private Panel recipesPanel = new RecipesPanel("main");
 private Panel current = cheesesPanel;

 public CheesrPage() {
 add(new Link("cheeseslink") {
 @Override
 public void onClick() {
 current.replaceWith(cheesesPanel);
 current = cheesesPanel;
 }
 @Override
 public boolean isEnabled() {
 return current != cheesesPanel;
 }
 });
 add(new Link("recipeslink") {
 @Override
 public void onClick() {
 current.replaceWith(recipesPanel);
 current = recipesPanel;
 }
 @Override
 public boolean isEnabled() {
 return current != recipesPanel;
 }
 });
 add(current);

Listing 7.9 Using panel replacement to swap the main content of a page

Menu
links

b

Main
sectionc

Track active
paneld

Swap in
cheese panele

Add current
panel

f

193Page composition: creating a consistent layout
 Cart cart = /* get cart */
 add(new ShoppingCartPanel("cart", cart));
 }
}

Going from top to bottom in this listing, notice first in the markup that we replaced
the wicket:link tags with actual Wicket components b. We need to swap the panels
when the link is clicked. The auto-link isn’t suited for this purpose because it doesn’t
provide onClick event handlers, so we replace them with Link components. Next, we
use the main section div c to swap the cheeses with the recipes e.

 In the Java code, we have three references to panels: two for the panels and one to
keep track of which panel is currently active d. Finally we add the current panel to our
page f. The menu links swap the current panel with their respective content panel
and disable themselves when their panel is active, to mimic the auto-link behavior.

 The panel-swapping strategy takes more initial effort to implement than the multi-
page strategy using markup inheritance. Swapping panels can create complex pages
without much more effort than it took to create this example.

 We’ve shown you the ways in which you can compose pages. The obvious question
now becomes, which of the proposed solutions is the best?

7.2.4 Which is the best?

Because we presented three strategies to compose your pages, it’s logical to ask which
is best. To find out, let’s define some criteria we can use to evaluate each strategy. Typ-
ical criteria like performance and memory usage won’t vary among the proposed
strategies. Performance-wise, retrieving the data that needs to be displayed will usually
take longer than composing your page on the server using any of the techniques.
When you’re concerned with memory usage, the benefit of a carefully designed and
tested panel outweighs the couple of bytes that are saved when you inline the panel’s
contents into the page.

 We’ll skip these criteria and instead consider the following list:

■ Previewability—Can you preview the end result by opening the markup file
directly in the browser without starting the application?

■ Duplication—How much markup and code do you need to duplicate to get a
consistent layout throughout the application?

■ Navigation—Can you create an easy navigation structure using links?
■ Bookmarkability—Can users bookmark each page to revisit the specific loca-

tion later?

Let’s go through each of these criteria and see how the strategies hold up. When you’re
reading these evaluations, note that we’re considering extreme implementations of
each strategy—nothing is stopping you from mixing the strategies to your benefit.
PREVIEWABILITY

With Wicket, you can preview pages without having to start your application (at least,
to a certain extent). One issue is that without starting your application, no data is

194 CHAPTER 7 Composing your pages
available from the server. Another is that the stylesheet information isn’t usually
located side-by-side with your pages and Java classes when you open the markup file
directly in a browser.

 The best preview result is achieved by including as much markup and dummy text
in your HTML file as possible. Using plain pages is the best strategy when previewabil-
ity is important, because this strategy provides the browser with the most information.

 With markup inheritance, you need to do a bit more. For previewability, the
wicket:child tag in the base pages must be filled with mock markup; and in the child
pages, you need to surround the wicket:extend tags with the markup from the base
page to achieve the right result. Although the amount of markup is practically the
same as with the plain-pages approach, duplicating the available markup without
using it will quickly cause it to get out of sync. In our experience, it isn’t worth keeping
the example markup outside the wicket:extend tags after the initial development
of the page.

 The same holds true for the strategy of swapping panels. Because each panel pro-
vides different markup, the main page’s previewability is limited. You can include
example markup inside the tags associated with the panel and provide context
markup surrounding the wicket:panel tags, but the effort required to get good pre-
viewability is worthwhile only in the early stages of development.
DUPLICATION

One of the cardinal sins of software development is copy/paste programming. Once
code (and in web applications, markup counts as code) is duplicated, you’ve doubled
your maintenance requirements. Not only do you need to maintain code in two
places, but anyone new coming to your project must know where the code is dupli-
cated when he wants to change something. When your application consists of two
Wicket pages, this isn’t too great a concern. But when you have hundreds of pages,
and you want to change, for example, the stylesheet reference, you have to modify all
the pages instead of just one.

 The plain-pages approach to Wicket development results in a lot of duplication
when you want to maintain a consistent layout across the application. You need to
copy the page structure and add the appropriate stylesheet and JavaScript files to each
page’s header. Due to this duplication, this approach is workable with applications
consisting of at most 10 pages. Anything beyond that number will quickly run into
copy/paste errors.

 The situation improves considerably when you use pages with markup inheritance.
The structure goes into your base page, and only the specific markup and compo-
nents end up in the child pages. This structure provides excellent reuse of templates,
as you saw in section 7.2.2.

 Replacing panels gives you the same benefit as using markup inheritance. You have a
single base page for the layout and provide specific markup and components by swap-
ping panels in and out of the base page. The difference with markup inheritance is that
you can swap multiple parts of your page instead of only the wicket:child part.

195Summary
NAVIGATION

One of the key ingredients of web applications is the ability to navigate through your
application: for example, browsing the online cheese catalogue, browsing recipes, or
clicking a link to learn more about Parmesan cheese or find similar cheeses.

 Both the plain-pages and markup-inheritance strategies provide easy navigation
between pages. It’s natural to create links directly to a page or links that set the
response page to a new page.

 Creating a navigation plan for the swapping-panels approach is more complex.
You need to swap one panel with another to achieve some form of navigation. Instead
of creating a new page, you must get hold of the old panel and swap it with a new
panel. This swapping can easily be altered to work through Ajax links, making the
updates almost seamless to the user.
BOOKMARKABILITY

Closely related to navigation is the ability for users to create bookmarks that link to
pages they’ve visited. This is especially useful when a user discovers a particular cheese
and wants to share it with friends.

 The page-oriented strategies provide the best support for bookmarking. By using
BookmarkablePageLinks to navigate between the pages, users can bookmark and
share links with friends to their hearts’ content.

 Achieving bookmarkability with the panel-replacement strategy is much harder.
You have to encode a way to select the active panel in the bookmarkable URL, which
tends to fall apart when you have more than a couple of panels that can be replaced.
AND THE WINNER IS?
Surprisingly, we aren’t able to declare a clear winner. If you ask us which strategy is
best, our answer is, “It depends.”

 The plain-pages strategy is a good way to start: it provides ample opportunities to
create a mockup of your final application and to sprinkle real components across the
pages. When the mockup has served its purpose, you can migrate to any of the other
strategies by refactoring and moving parts to panels and creating a hierarchy of pages.
The end result for your application will probably be a mix of markup inheritance and
panel replacement.

7.3 Summary
This chapter concludes part 2 of this book. In the previous chapters, you learned
about components and how to put them to good use. In this chapter, you learned how
to group these components. Grouping components enables you to hide or show parts
of pages by setting the visibility flag of one component: the grouping container. There
are three grouping containers: WebMarkupContainer, Panel, and Fragment. Each of
these containers has a different use case, and each is best suited for a particular task.
Table 7.1 lists the grouping containers and when to use them.

 You learned that using panels provides opportunities to reuse code and markup
across pages. But even when you reuse a menu panel across pages, you’re still duplicating
a lot of code. We therefore looked at composing pages to cut down on code duplication.

196 CHAPTER 7 Composing your pages
 We discussed three ways of composing pages. Using plain pages is the most basic
approach; you don’t take any precautions to prevent code and markup duplication.
This strategy is best for small applications and at the start of projects.

 When the design has settled and the number of pages in your application
increases, it’s best to apply markup inheritance to factor out the common bits and cre-
ate a hierarchy of pages. The base page defines the common layout, and the child
pages provide the specific functionality.

 We also looked at composing pages by replacing panels on a single base page. This
strategy provides a great way to create highly interactive applications where Ajax is
used to swap functionality in the application.

 By grouping common components using a panel, you can create a custom compo-
nent. However, panels aren’t the only way to create custom components; nor did we
touch all aspects of custom component creation. The next chapter will discuss custom
components in detail.

Part 3

Going beyond Wicket basics

Now that you know how to use the components that come with Wicket, it’s
time to take the plunge and build components yourself. In chapter 8, you’ll
learn how to create custom reusable components. Chapter 9 gives you insight
into working with resources such as images, JavaScript files, stylesheets, and CSV
files. Chapter 9 also covers integration with third-party libraries to generate
dynamic content using a captcha example.

 Creating custom components is great, but creating rich components is more
fun. Chapter 10 introduces Ajax and discusses how to use Ajax in your applica-
tions. You’ll learn how to create your own rich, Ajaxified components.

Developing
reusable components
In chapter 7, we looked at group components strategies. You learned that panels
are particularly well suited for creating components that can be reused in a vari-
ety of contexts, without the need to know anything about their internal structure.

 In this chapter, we’ll look at creating reusable components. The more generic
and context-independent components are, the easier it is to reuse them. We’ll
first look at examples of generic components. We’ll start with a locale compo-
nent, which is simple; later, we’ll add features to illustrate how you can create
compound components. After that, we’ll discuss how to develop a date-time
panel, to illustrate how you can create compound components that participate in
form processing.

 In the second half of this chapter, we’ll examine a domain-specific component:
a discount list for the cheese store example. It will illustrate that components can
have their own independent navigation. The discount list will also use some of the

In this chapter:
■ Learn the advantages of creating custom

components
■ Create complex compound components that

include their own navigation
199

200 CHAPTER 8 Developing reusable components
components developed earlier in this chapter, and it will be the component we’ll
build upon in the chapters that follow.

 Before we get back into coding, let’s look at why you should take the time to create
reusable components.

8.1 Why create custom reusable components?
Creating custom reusable components takes effort. You need to think about the
proper abstractions, encapsulations, and couplings, and you have to design an API,
document it, and so on. Why go through the effort? Here are a few good reasons:

■ To battle code duplication. Code duplication (also known as copying and pasting) is
one of the larger evils in software engineering. You’ll get into situations where
you fix a bug in one place but forget about duplicate code elsewhere. Code
duplication is a telltale sign of software that isn’t well thought out.

■ To save time. If you solved a problem once and need to address a similar problem
somewhere else, being able to reuse a component can be a huge time-saver.
Even if the component needs to be tweaked to fit in this new use case, it’s typi-
cally cheaper to do this than to solve the problem again from scratch. Often,
the further your project progresses, the more time you’ll save by being able to
reuse components you wrote at an earlier stage.

■ To improve quality. Less code means fewer bugs. And instead of implementing a
quick (and often dirty) solution, you take a step back to think about what you
really need to solve. That process often results in better code. On top of that,
reusing components gets them more exposure (testing hours), so issues are
often found more quickly.

■ To divide tasks more easily. Breaking pages into sets of components enables you to
better delegate development tasks across multiple team members.

■ To achieve better abstraction. One of the main ideas behind modularization in pro-
gramming is that you can manage complexity by breaking big problems into
smaller ones. Custom components can help you tackle issues one at a time.
Imagine a component that combines a search panel, a pageable results list, fil-
ters, and sort headers. Once you have that, you only have to focus on how you
connect the data.

The remainder of this chapter looks at examples of creating custom components.
We’ll start with a component for switching a user’s locale.

8.2 Creating a component that selects the current locale
Java’s Locale object represents the combination of a language and country. Examples
of locales are Thai/Thailand, English/USA, and English/UK. Wicket utilizes the user’s
locale to perform date and number conversions, do message lookups, even determine
which file the markup is loaded from. We’ll take a closer look at such capabilities in
chapter 12, where you’ll use them as part of a user properties panel.

201Creating a component that selects the current locale
 Before we start implementing the Locale object, let’s see what we mean by devel-
oping custom reusable components.

8.2.1 What are reusable custom components?

It sounds exciting to learn about authoring custom components, but you’ve already
seen quite a few in previous chapters. For instance, this code fragment is a custom
component:

add(new Link("add") {
 public void onClick() {
 setResponsePage(new EditContactPage(new Contact()));
 }
});

It isn’t a reusable custom component, because the only way to put this functionality
into another page is to copy it. But making it a reusable component is easy:

public class AddLink extends Link {

 private AddLink(String id) {
 super(id);
 }

 public void onClick() {
 setResponsePage(new EditContactPage(new Contact()));
 }
}

Because the second code fragment is defined in its own public class, you can put it on
any page or any panel by instantiating it and adding it.

 Another example of a reusable component is a required text field. Without it, we’d
define a text field that enforces input like this:

TextField f = new TextField("name");
f.setRequired(true);

If we did that for 10 fields, we’d get a lot of code bloat. To avoid that, we can create a
custom component that hides the call to setRequired. Listing 8.1 shows the code for
such a component.

public class RequiredTextField extends TextField {

 public RequiredTextField(String id) {
 super(id);
 setRequired(true);
 }

 public RequiredTextField(String id, IModel model) {
 super(id, model);
 setRequired(true);
 }
}

Listing 8.1 RequiredTextField component

202 CHAPTER 8 Developing reusable components
Using this code, we can declare a required component in one line:

RequiredTextField f = new RequiredTextField("name");

This component is trivial. But the need to hide implementation details becomes more
obvious when we look at the implementation of a date format label (see listing 8.2).
This component prints the date of its model object in MEDIUM notation as used in
java.text.DateFormat.

public class DateFmtLabel extends Label {

 public DateFmtLabel(String id) {
 super(id);
 }

 @Override
 public final IConverter getConverter(Class type) {
 return new StyleDateConverter("M-", true);
 }
}

If we have this component, we can do this:

add(new DateFmtLabel("until"));

Assuming a date value is provided—say, through a compound property model—it’s
formatted as follows: Sep 26, 2007. Internally, a format converter that can handle
dates is configured, and the implementation details are hidden from those who wish
to reuse this component. With preconfigured components like these, you can easily
enforce consistency in your projects.

 In the next section, we’ll develop a custom component that displays the current
locale and lets users change to another one.

8.2.2 Implementing the locale-selector component

In action, the locale-select component looks like the drop-down menu shown in the
partial screen shot in figure 8.1.

The current locale is English. If we select Thai from the drop-down menu, the display
changes as shown in figure 8.2.

Listing 8.2 The DateFmtLabel component

Figure 8.1 The locale-select component in action

Figure 8.2 The locale changed to Thai

203Creating a component that selects the current locale
Listing 8.3 shows how the component is implemented.

public class LocaleDropDown extends DropDownChoice {

 private class LocaleRenderer extends ChoiceRenderer {

 @Override
 public String getDisplayValue(Object locale) {
 return ((Locale) locale).getDisplayName(getLocale());
 }
 }

 public LocaleDropDown(String id, List<Locale> supportedLocales) {
 super(id, supportedLocales);
 setChoiceRenderer(new LocaleRenderer());
 setModel(new IModel() {

 public Object getObject() {
 return getSession().getLocale();
 }

 public void setObject(Object object) {
 getSession().setLocale((Locale) object);
 }

 public void detach() {
 }
 });
 }

 @Override
 protected boolean wantOnSelectionChangedNotifications() {
 return true;
 }
}

ChoiceRenderers are used by components such as the drop-down menu to determine
what should be rendered as visible values for users and what as internal identifiers.
Letting the wantOnSelectionChangeNotifications method return true results in a
postback every time a user changes the selection in the drop-down menu.

 The nice thing about this code is that there isn’t much to it. By extending the
drop-down menu component, we let that component do the heavy lifting, and we can
focus on the specific functionality we need.

 Again, this is an example of how you can fairly easily build custom components by
hard-wiring a particular component configuration. Instead of creating a custom class,
we could have instantiated a drop-down menu and set the choice renderer and model
on it directly. If we needed this functionality only once, that would be a fine choice. But
if we might need the functionality multiple times, a single line of code now suffices:

 add(new LocaleDropDown("localeSelect", Arrays
 .asList(new Locale[] { Locale.ENGLISH,
 Locale.SIMPLIFIED_CHINESE, new Locale("th") })));

Listing 8.3 Implementation of the locale select component

Render
choices

Display in
current
locale’s
language

Use
custom-
defined
model

Use session’s
locale directly

204 CHAPTER 8 Developing reusable components
It’s nice that the component lets you switch from English to
Thai; but if your Thai language skills are lacking, you sud-
denly won’t understand what was on the page. Suppose, as
an exercise, we provide a link that resets the session’s locale
to the value it had when the component was constructed. We
want the link’s display to be transparent to the user; the component should be a single
entity that can be constructed as you just saw.

 Figure 8.3 shows the locale-select component with a Reset link.
 How do you create a component that consists of two components? The next sec-

tion explains.

8.2.3 Creating a compound component
As you learned in chapter 7, panels are a good choice to create compound compo-
nents. Panels can easily be reused in separate contexts without requiring users to
know about their internal structure. That comes in handy here, because we’re about
to create a combination of components: the drop-down menu and a Reset link. We
don’t want users to have to include the markup for both components in their pages;
we make it possible for them to use, say, a tag as a placeholder.

 The code in listing 8.4 is the first step in developing the compound component.
We wrap the locale drop-down menu we developed in the previous section in a panel.

public class LocaleDropDownPanel extends Panel {

 private static class LocaleDropDown extends DropDownChoice {

 private class LocaleRenderer extends ChoiceRenderer {

 @Override
 public String getDisplayValue(Object locale) {
 return ((Locale) locale).getDisplayName(getLocale());
 }
 }

 LocaleDropDown(String id, List<Locale> supportedLocales) {
 super(id, supportedLocales);
 setChoiceRenderer(new LocaleRenderer());
 setModel(new IModel() {

 public Object getObject() {
 return getSession().getLocale();
 }

 public void setObject(Object object) {
 getSession().setLocale((Locale) object);
 }

 public void detach() {
 }
 });
 }

Listing 8.4 Locale drop-down menu nested in a panel

Figure 8.3 The drop-down
menu with a Reset link

205Creating a component that selects the current locale
 @Override
 protected boolean wantOnSelectionChangedNotifications() {
 return true;
 }
 }

 public LocaleDropDownPanel(String id, List<Locale> supportedLocales) {
 super(id);
 add(new LocaleDropDown("localeSelect", supportedLocales));
 }
}

And here’s the code for LocaleDropDownPanel.html:

<wicket:panel>
 <select wicket:id="localeSelect">
 <option value="nl">Dutch</option>
 <option value="en">English</option>
 </select>
</wicket:panel>

Pretty straightforward, isn’t it?
 The option elements in the markup will be discarded. They’re here so you can

preview the markup in an arbitrary editor—or even your browser—and have an idea
what the panel will look like. If we don’t care about the preview, we can do this:

<wicket:panel>
 <select wicket:id="localeSelect" />
</wicket:panel>

The instantiation works much the same as before:

 add(new LocaleDropDownPanel("localeSelect",
 Arrays.asList(new Locale[] { Locale.ENGLISH,
 Locale.GERMAN, Locale.SIMPLIFIED_CHINESE })));

But the markup used as a placeholder for the component is now something like this

rather than this:

 <select wicket:id="localeSelect">
 <option value="nl">Dutch</option>
 <option value="en">English</option>
 </select>

If we tried the latter, the resulting markup would be as follows:

<select>
 <select name="localeSelect:localeSelect"

onchange="window.location.href='?wicket:interface=
5:localeSelect:localeSelect::IOnChangeListener::&localeSelect:locale
Select=' + this.options[this.selectedIndex].value;">

 <option selected="selected" value="0">English</option>
 <option value="1">German</option>
 <option value="2">Chinese (China)</option>
 </select>
</select>

206 CHAPTER 8 Developing reusable components
A select tag nested within another select tag isn’t valid HTML, so the output is
wrong. The HTML looks this way because panels replace what is between the tags
they’re attached to, not the tags themselves.

 If we care about previewability, we can use tags. Here we’ve added dummy
markup for a select next to where our panel (which in turn contains a select) will
be replaced:

 <wicket:remove>
 <select>
 <option value="nl">Dutch</option>
 <option value="en">English</option>
 </select>
 </wicket:remove>

These <wicket:remove> tags instruct Wicket to skip everything between them, so you
can insert any markup you want for the purpose of previewability.

 In case you think this is a half-baked solution, we can do something smart to let
users use a <select> tag as a placeholder for our panel. Using our panel (which essen-
tially is a specialized select) feels like using a normal select. At runtime, we can con-
vert the tag to something harmless (like a tag) by putting this in our panel:

 @Override
 protected void onComponentTag(ComponentTag tag) {
 super.onComponentTag(tag);
 tag.setName("span");
 }

The name property of ComponentTag is mutable and determines what the actual HTML
tag is when it’s rendered. If we render the component with this code in place, the out-
put is as follows:

 <select name="localeSelect:localeSelect"
onchange="window.location.href='?wicket:interface=
5:localeSelect:localeSelect::IOnChangeListener::&
localeSelect:localeSelect=' +
 this.options[this.selectedIndex].value;">
 <option selected="selected" value="0">English</option>
 <option value="1">German</option>
 <option value="2">Chinese (China)</option>
 </select>

This is the case regardless of what tag is used in the markup: it’s always set to .
 Most components shipped with Wicket don’t alter tags like we just did. You have

fewer surprises that way, which increases the chance that you’ll write robust programs.
But changing the tag can be a convenient trick to facilitate better previewability in
your projects.

 The locale-select component currently has the same functionality it had before,
but now it’s wrapped in a panel. In the next section, we’ll add the Reset link.

207Creating a component that selects the current locale
8.2.4 Adding a Reset link

The Reset link implements the functionality to change the locale back to what the
user’s locale was when the component was instantiated. The first step is to save
the locale before it is changed. In this example, we do that lazily through the model
(see listing 8.5).

 public void setObject(Object object) {
 Session session = getSession();
 Locale keep = (Locale) session.getMetaData(SAVED);
 if (keep == null) {
 session.setMetaData(SAVED, getLocale());
 }
 session.setLocale((Locale) object);
 }

We store the locale as session metadata. Metadata exists for components, request
cycles, sessions, and applications; you can use it to store arbitrary objects such as con-
figuration data, authorization data, or just about anything you wish. In this example, it
makes sense to use this facility so we don’t have to force users of our component to
provide a custom session that stores the initial locale as a property.

 The metadata key is defined like this:

static MetaDataKey SAVED = new MetaDataKey(Locale.class) { };

Now, we can add to the panel a link that uses this metadata to reset the locale (see list-
ing 8.6).

 add(new Link("reset") {
 @Override
 public void onClick() {
 Session session = getSession();
 Locale keep = (Locale) session.getMetaData(SAVED);
 if (keep != null) {
 session.setLocale(keep);
 session.setMetaData(SAVED, null);
 }
 }
 });

The link gets the saved locale from the session, if it exists, and if so, sets the locale to
that value and nulls the metadata entry.

 Here’s the panel template:

<wicket:panel>
 <select wicket:id="localeSelect" />
 [reset]
</wicket:panel>

Listing 8.5 setObject implementation that saves the current locale

Listing 8.6 Implementation of the Reset link

208 CHAPTER 8 Developing reusable components
Let’s look at what we’ve achieved so far. We created a component that lets users switch
their locale. To use this component, you don’t have to know anything about how
it’s implemented; nor does it have to know anything about what else is on the page it’s
placed on. The component can handle input, such as selection changes or a click of
the Reset link, independent of what is on the page. The component is truly self-
contained. You’ll see it again in chapter 12 on localization.

 Remember the DateFmtLabel component from the beginning of this chapter? In
the next section, we’ll develop an input-receiving and time-enabled counterpart,
which will show how you can develop composite components that participate in
form processing.

8.3 Developing a compound component: DateTimeField
Our goal in this section is to create a component, DateTimeField, that provides the
user with separate input fields for the date, hours, and minutes. The component
should hide from users the internal implementation details; users should provide a
model that works as a date and be done with it.

 When it’s finished, you’ll be able to use the component as shown in listing 8.7.

public class DateTimeFieldPage extends WebPage {

 private Date date = new Date();

 public DateTimeFieldPage() {
 Form form = new Form("form") {
 @Override
 protected void onSubmit() {
 info("new date value: " + date);
 }
 };
 add(form);
 PropertyModel model = new PropertyModel(this, "date");
 form.add(new DateTimeField("dateTime", model));
 add(new FeedbackPanel("feedback"));
 }
}

Here’s the markup:

 <form wicket:id="form">
 [date time field here]
 <input type="submit" value="set" />
 </form>
 <div wicket:id="feedback">[feedback here]</div>

When rendered in a browser, it looks like figure 8.4.
 As you can see, this component is a composite. Let’s examine how to implement it.

Listing 8.7 Example of how DateTimeField can be used

Figure 8.4

The DateTimeField component as rendered in a browser

209Developing a compound component: DateTimeField
8.3.1 Composite input components

Things can get tricky when you want to create compound components that act like
form components. You can nest form components in panels, and their individual
models will be updated without any problem; but the model of the panel isn’t auto-
matically updated. That often isn’t an issue: the locale drop-down menu we developed
works fine embedded in a normal panel, and the panel doesn’t need to have a model
of its own. But consider a date-time field that works on a model (which produces a
date) and which internally breaks dates into separate date (day of month) and time
(hours and minutes) fields. You could let each of these nested components update its
part of the model, but then you wouldn’t have a single action for updating the model
object of the outer component. Also, because validation is only executed for form
components, you would have to pass validators to nested components—and that
would bloat your component’s API and expose implementation details.

 The solution is to use a special kind of component that is both a panel and a form
component: FormComponentPanel. Like normal panels, form component panels are
associated with markup files; but unlike panels, they participate in form processing.
We’ll base the date-time field on this special component. In the next section, we’ll start
by embedding the form components that do the real job of receiving input for us.

8.3.2 Embedding form components

The first part of writing the date-time field is straightforward. We already know that we
need to nest three text-field components: one for the date, one for the hours, and one
for the minutes. These components should work with their own models, and the date-
time field should use these model values to update its own model as an atomic opera-
tion. In other words, the component should update its model only when all the inputs
of the nested components are valid and can be combined to form a date that passes
the component’s validation.

 We’ll look next at how a date-time field component can be implemented. The code
is extensive, so it’s broken up over several sections. Listing 8.8 shows the first part.

public class DateTimeField extends FormComponentPanel {

 private Date date;
 private Integer hours;
 private Integer minutes;
 private final DateTextField dateField;
 private final TextField hoursField;
 private final TextField minutesField;

 public DateTimeField(String id) {
 this(id, null);
 }

 public DateTimeField(String id, IModel model) {
 super(id, model);

Listing 8.8 DateTimeField embedding the form components

210 CHAPTER 8 Developing reusable components
 setType(Date.class);
 PropertyModel dateFieldModel = new PropertyModel(this, "date");
 add(dateField = newDateTextField("date", dateFieldModel));
 dateField.add(new DatePicker());
 hoursField = new TextField("hours", new PropertyModel(this,
 "hours"), Integer.class);
 add(hoursField);
 hoursField.add(NumberValidator.range(0, 24));
 hoursField.setLabel(new Model("hours"));
 minutesField = new TextField("minutes", new PropertyModel(
 this, "minutes"), Integer.class)
 add(minutesField);
 minutesField.add(NumberValidator.range(0, 59));
 minutesField.setLabel(new Model("minutes"));
 }

Each field works on its own model object (date, hours, and minutes). Note that we
don’t have to add getters and setters for the private members date, hours, and min-
utes, because property models can work on them directly. We can decide to regard
such fields as implementation details and not expose them via getters and setters.

 The component exposes two constructors. The one without a model argument is
useful when you want to use the component with compound property models.

 The hours and minutes text fields both have validators attached to ensure valid
input, and they have labels set for error reporting. You’ve seen how this works in ear-
lier chapters.

 A last interesting bit from this fragment is the use of a factory method that pro-
duces the date text field:

 add(dateField = newDateTextField("date", dateFieldModel));

By default—in this component—this factory method is implemented like this:

 protected DateTextField newDateTextField(String id,
 PropertyModel dateFieldModel) {
 return DateTextField.forShortStyle(id, dateFieldModel);
 }

By delegating the construction of the date text field to a factory method, we enable
users to provide their own versions or configurations of the text field. They could, for
instance, specify a date pattern by overriding the factory method like this:

 dateTimeField = new DateTimeField("dateTime", model) {
 @Override
 protected DateTextField newDateTextField(String id,
 PropertyModel dateFieldModel) {
 return DateTextField.forDatePattern(id, dateFieldModel,
 "dd-MM-yyyy");
 }
 };

There are no surprises in the first part of the date-time field. Next, we’ll look at how to
synchronize the models of the nested components with the model of the top component.

211Developing a compound component: DateTimeField
This wasn’t relevant for the locale-selection component earlier, because it works with
its own model and isn’t meant to interface with a model provided by users. This com-
ponent, however, is meant to be used as follows:

 form.add(new DateTimeField("dateTime", model));

Users will expect the date-time field to use the provided model object. If the model
produces a date like 12 January 2008, 11:00 AM, they will expect the date and time
fields to display values accordingly; and if end users change these fields and submit
them as part of a form, the users will expect the date to be changed properly.

 We need to synchronize the models that are used by the embedded components in
a separate step so the change is atomic: either all nested fields validate and the date is
updated properly, or the nested fields don’t validate, in which case the date isn’t
updated. The next section shows how to do this.

8.3.3 Synchronizing the models of the embedded components
To keep the models of the nested components and the top component synchronized,
we need to override two methods: onBeforeRender, which prepares for rendering,
and convertInput, which handles receiving input. onBeforeRender is defined at the
level of the Component base class. We’ll use it as a hook into the component lifecycle so
that we can synchronize the internal models right before the nested components are
rendered (see listing 8.9).

 @Override
 protected void onBeforeRender() {
 date = (Date) getModelObject();
 if (date != null) {
 Calendar calendar = Calendar.getInstance(getLocale());
 calendar.setTime(date);
 hours = calendar.get(Calendar.HOUR_OF_DAY);
 minutes = calendar.get(Calendar.MINUTE);
 }
 dateField.setRequired(isRequired());
 super.onBeforeRender();
 }

This code reads the current value of the model object—which should be a date—
and extracts the days, hours, and minutes values from it so they can be used by the
nested text fields. It’s important to realize that the date-time field doesn’t “own” its
model or model value. The model is a reference to some data passed in, so it may
have been changed from the outside between requests. For instance, in the Date-
TimeFieldPage example (listing 8.7), we could include a link in the page to set the
date-time to “now”:

 add(new Link("now") {
 @Override
 public void onClick() {

Listing 8.9 DateTimeField preparing for rendering

Synchronize
member
variables

Synchronize
required flag

Call super
(required)

212 CHAPTER 8 Developing reusable components
 date = new Date();
 }
 });

In this case, the date used by the model of the date-time field would be changed with-
out our direct knowledge. So, it’s a good idea to determine the current model value
right before rendering, assuming it might have been changed since the last time we
checked (and saved) it, which explains the call to getModelObject().

 Notice two other things in the method implementation: we have to remember to
call the super-implementation of the onBeforeRender method (although in this case
it doesn’t matter whether that is done toward the start or end of the method), and we
set the required bit of the date text field according to whether the component is
required. In this case, hours and minutes are always optional.

 The second method, convertInput, handles the receiving of user input. Listing 8.10
defines this method.

 @Override
 protected void convertInput() {
 Date date = (Date) dateField.getConvertedInput();
 if (date != null) {
 Calendar calendar = Calendar.getInstance(getLocale());
 calendar.setTime(date);
 Integer hours = (Integer) hoursField.getConvertedInput();
 Integer minutes = (Integer) minutesField.getConvertedInput();
 if (hours != null) {
 calendar.set(Calendar.HOUR_OF_DAY, hours % 24);
 calendar.set(Calendar.MINUTE,
 (minutes != null) ? minutes : 0);
 }
 setConvertedInput(calendar.getTime());
 } else {
 setConvertedInput(null);
 }
 }

The convertInput method is called during the first phase of component validation
(before any validators are executed). Implementations should parse user input and
either set the converted input using setConvertedInput or report that the input
couldn’t be interpreted directly. A form component panel typically doesn’t receive
user input directly. But because its nested components do, and because it wants to
update its own model value accordingly, we override this method.

 Form processing functions like validating and updating models are done using
depth-first (postorder) traversals of the component tree. In effect, this means the chil-
dren of compound components are processed before the top component. That is
exactly what we need here, because we want to construct the date from the already-
processed nested components. The tricky thing is that when Wicket calls convertInput,
form processing hasn’t finished performing validation, and the models of the

Listing 8.10 DateTimeField receiving input

213Developing a discount list component
nested components aren’t yet updated. We can’t use the date, hours, and minutes
member variables to construct the date. Instead, we can manually call getConverted-
Input on the nested components. We can safely do that because convertInput is
called only when a form component is marked “valid” (meaning it passed all valida-
tion), and the method to determine that (isValid) returns true only when all chil-
dren are valid. We can implement convertInput assured that the input of the nested
components is valid.

 After doing a bit of date calculation, we set the converted date. Note that because
we can assume all the validators of the nested components executed successfully, we
know that the hours and minutes values we get from the nested components are valid:
we added validators to them to enforce that.

 One last method will make the component well-rounded:

 @Override
 public String getInput() {
 return dateField.getInput() + ", " + hoursField.getInput() + ":"
 + minutesField.getInput();
 }

This method is used by the default implementation of convertInput. It’s also useful at
various locations for error reporting (for example, for validators with messages that
use the ${input} variable).

 We’ll use this component in the next and last sections of this chapter, where we’ll
develop another custom component: the discount list.

8.4 Developing a discount list component
The locale-select component and date-time field are both examples of generic compo-
nents; they can function in a large variety of contexts. In this section, we’ll develop a
component that is specific for a certain domain. We may be able to reuse it across our
domain—the cheese store—but even if we use it only once, developing it as a separate
component still makes sense. Doing so allows us to focus on problems one at a time;
and once we have the component, we can place it on any page or panel. That also
makes refactoring a lot easier.

 The component we’re about to develop lists discounts and has an administration
function for editing those discounts. Switching between the normal list and editing is
handled by the component.

 The domain model can be described as follows. A discount consists of a reference
to a cheese, a description, a discount (which is a percentage), and a date from/until
when the offer is valid. Figure 8.5 shows a UML diagram.

description : String
discount : double
from : Date
until : Date

Discount

name : String
description : String
price : double

Cheese
cheese

1 Figure 8.5

The discount list component’s mini-
domain model

214 CHAPTER 8 Developing reusable components
Schematically, the layout of the discount-list component can be drawn as shown in fig-
ure 8.6.

 The component’s top section has a static title and a link that displays either Edit or
Display, depending on the component’s state. The rest of the section (Display)
displays either a read-only list with discounts or a form with a list of input fields to
directly edit those discounts.

 When the component is in list mode, it displays the discounts, and the link says
Edit. If the link is clicked, the display changes to a form in which the list can be
directly edited and which has buttons for adding and removing rows. In edit mode,
the link in the title section says Display; when clicked, it changes the display back to
the normal list.

 In the next section, we’ll look at the top-level component that contains the header
and list sections.

8.4.1 The container

The container, DiscountsPanel, nests the header and list components and needs to
track whether it’s in edit mode (if not, it should display the read-only list). Listing 8.11
shows the code for the container component.

public class DiscountsPanel extends Panel {

 private boolean inEditMode = false;

 public DiscountsPanel(String id) {
 super(id);
 add(new DiscountsList("content"));
 final Link modeLink = new Link("modeLink") {
 @Override
 public void onClick() {
 inEditMode = !inEditMode;
 setContentPanel();

Listing 8.11 The container component

Discounts (edit/ display)

Display

Figure 8.6 The layout of the discount list component

Current
mode

Switch mode

215Developing a discount list component
 }
 };
 add(modeLink);
 modeLink.add(new Label("linkLabel", new AbstractReadOnlyModel() {
 @Override
 public Object getObject() {
 return inEditMode ? "[display]" : "[edit]";
 }
 }));
 }

 void setContentPanel() {
 if (inEditMode) {
 addOrReplace(new DiscountsEditList("content"));
 } else {
 addOrReplace(new DiscountsList("content"));
 }
 }
}

As you can see, the component initially nests the DiscountList component (inEdit-
Mode starts out being false). Whenever the mode link is clicked, the mode is switched
and the content component is replaced accordingly.

 Reflect on what we’ve achieved. Using component replacement, we created a com-
ponent that can perform its own self-contained navigation. We created a portlet-like
miniapplication that can function in any page without further configuration. This is
quite a contrast to many of Wicket’s competitors, which force you to do everything
with page navigation.

 As great as component replacement is in many cases, you need to keep a couple of
things in the back of your mind.

COMPONENT-REPLACEMENT GOTCHAS

Consider that as soon as you start applying component replacement, you lose book-
markability. In order to provide Back button support, Wicket records versions of pages
that make structural changes; that way, if the Back button is clicked, Wicket can roll
back to a previous structure.

 Also keep in mind that the identifiers of the replacement and replaced compo-
nents must be the same. Unless your component actively changes the tag it’s linked to
(as in section 8.1.4), you have to be careful that the replacement is compatible with
the structure of the component it replaces. For instance, you can’t replace a text field
with a list view. But if you use panels and fragments as we do in this example, you’ll
never run into this problem.

 The last thing we need to finish the top-level part of the component is the markup.
As you can see, it’s straightforward:

<wicket:panel>
 <div>
 <div>
 Special discounts

Mode-dependent
link label

Add or
replace child

216 CHAPTER 8 Developing reusable components

 [label]

 </div>
 [panel content here]
 </div>
</wicket:panel>

The first part of the component is finished. Using the component is as simple as this:

add(new DiscountsPanel("discounts"));

In the next two sections, we’ll develop the discount list panels, which will be placed
one at a time in the content section of the component we just built. We’ll start with
the default panel: the read-only discounts list.

8.4.2 The read-only discounts list
In view mode, the read-only list is the component that is displayed as the content. Fig-
ure 8.7 shows the discount list in view mode. It displays discounts the way end users
would see them, except that it has an Edit link embedded.

For the implementation, we’ll embed a refreshing-view component (a list that recalcu-
lates its children on every render) in a panel, so we can easily use the list elsewhere
without having to worry about what the internal structure looks like. Listing 8.12 shows
the implementation.

public class DiscountsList extends Panel {

 public DiscountsList(String id) {

 super(id);
 add(new RefreshingView("discounts") {

 @Override
 protected Iterator getItemModels() {
 return new ModelIteratorAdapter(MyDataBase.getInstance()
 .listDiscounts().iterator()) {
 @Override
 protected IModel model(Object object) {
 return new CompoundPropertyModel((Discount) object);
 }
 };
 }

 @Override
 protected void populateItem(Item item) {

Listing 8.12 Implementation of the read-only list component

Mode-switch
link

Content
section

Figure 8.7

The discount list component
in view mode

Wrap discounts list

CompoundPropertyModel

217Developing a discount list component
 item.add(new Label("cheese.name"));
 item.add(new PercentLabel("discount"));
 item.add(new Label("description"));
 item.add(new DateFmtLabel("until"));
 }
 });
 }
}

The getItemModels method needs to return an iterator that produces IModel objects.
The ModelIteratorAdapter wraps the iterator of the discounts list, and we wrap each
object that is produced by the iterator in a compound property model. Because every
list item will have a compound property model set, we can add components without
explicitly providing their models; the child components will use their identifiers as
property expressions on those models.

 Listing 8.13 shows the markup for the read-only list.

<wicket:panel>
 <li wicket:id="discounts">
 name,
 description:
 discount off!
 (valid until until)

</wicket:panel>

Note that we use another custom component: a label that formats its model value as a
percentage. As an exercise, think about how you would implement that, and compare
it to the component available in the code that comes with this book.

 Now that we’ve implemented the read-only list for view mode, we’re ready to look
at the edit list for the discount-list component’s edit mode.

8.4.3 The edit-discounts list

The edit list provides a form for bulk editing discounts; it includes a button for creat-
ing a new discount and links for removing discounts. When we’re done, it will look
like figure 8.8.

 Let’s start with the simple part and create a panel with a form, a button for a new
discount, and a save button that persists the bulk changes. You can see the implemen-
tation in listing 8.14.

Listing 8.13 Markup for the read-only list component

Figure 8.8 A screenshot of the edit-discounts list

218 CHAPTER 8 Developing reusable components
public final class DiscountsEditList extends Panel {

 private List<Discount> discounts;

 public DiscountsEditList(String id) {

 super(id);
 Form form = new Form("form");
 add(form);
 form.add(new Button("newButton") {
 @Override
 public void onSubmit() {
 DiscountsEditList.this.replaceWith(
 new NewDiscountForm(DiscountsEditList.this.getId()));
 }
 });
 form.add(new Button("saveButton") {
 @Override
 public void onSubmit() {
 MyDataBase.getInstance().update(discounts);
 info("discounts updated");
 }
 });
 form.add(new FeedbackPanel("feedback"));
...

The Wicket part of this code should hold no secrets by now. To make the example
somewhat realistic, we’re keeping a reference to a list of discounts retrieved from the
database, which after updating is saved back to the database.

 It’s more interesting to look at the use of replaceWith. This method, which is defined
on the component base class, is shorthand for doing getParent().replace(..), where
replace is a method defined on MarkupContainer. Either form is fine.

 The first part of the repeater is implemented as shown in listing 8.15.

RefreshingView discountsView = new RefreshingView("discounts") {

 @Override
 protected Iterator getItemModels() {
 if (discounts == null) {
 discounts = DataBase.getInstance().listDiscounts();
 }
 return new ModelIteratorAdapter(discounts.iterator()) {
 @Override
 protected IModel model(Object object) {
 return EqualsDecorator
 .decorate(new CompoundPropertyModel((Discount) object));
 }
 };
 }

Listing 8.14 Form portion of the list-editing component

Listing 8.15 Repeater’s iterator

Replace
self

Save list
contents

219Developing a discount list component
This is almost the same as the way we defined getItemModels in the read-only list. If it
were exactly the same, we probably would have made a common base class for it. But
here we assign the discounts list we get from the database to the discounts member.
Because the database returns a snapshot of its current contents when servicing list-
Discounts calls, we in effect keep a reference to a working copy of the database con-
tents. The Save button’s onSubmit method synchronizes the working copy with the
database contents by calling the database’s update method.

 Also, because we’re working in a form, we don’t want the repeater to discard its
child components every time rendering completes (the default behavior when
refreshing a view). Instead, it should refresh only when the model objects are
changed. We can configure this by setting the item-reuse strategy, as follows:

discountsView.setItemReuseStrategy(
 ReuseIfModelsEqualStrategy.getInstance());

That, together with wrapping the model with EqualsDecorator—which returns a
model proxy that implements equals and hashCode using the model object—makes
the repeater refresh only when the underlying model changes. Listing 8.16 shows the
implementation of EqualsDecorator (an elaborate explanation of it is outside the
scope of this book).

public final class EqualsDecorator {

 private EqualsDecorator() { }

 public static IModel decorate(final IModel model) {
 return (IModel) Proxy.newProxyInstance(model.getClass()
 .getClassLoader(), model.getClass().getInterfaces(),
 new Decorator(model));
 }

 private static class Decorator implements
 InvocationHandler, Serializable {

 private final IModel model;

 Decorator(IModel model) { this.model = model; }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 String methodName = method.getName();
 if (methodName.equals("equals")) {
 if (args[0] instanceof IModel) {
 return Objects.equal(model.getObject(), ((IModel) args[0])
 .getObject());
 }
 } else if (methodName.equals("hashCode")) {
 Object val = model.getObject();
 return Objects.hashCode(val);
 } else if (methodName.equals("writeReplace")) {

Listing 8.16 Model proxy that implements equals and hashCode

220 CHAPTER 8 Developing reusable components
 return new SerializableReplacement(model);
 }
 return method.invoke(model, args);
 }
 }

 private static class SerializableReplacement implements
 Serializable {
 private final IModel model;

 SerializableReplacement(IModel model) { this.model = model; }

 private Object readResolve() throws ObjectStreamException {
 return decorate(model);
 }
 }
}

The last code fragment of the list-editing component is shown in listing 8.17: the pop-
ulateItem implementation.

 @Override
 protected void populateItem(Item item) {
 item.add(new Label("cheese.name"));
 item.add(new PercentageField("discount"));
 item.add(new RequiredTextField("description"));
 item.add(new DateTimeField("from"));
 item.add(new DateTimeField("until"));

 final Discount discount = (Discount) item.getModelObject();
 final Link removeLink = new Link("remove") {
 @Override
 public void onClick() {
 MyDataBase.getInstance().remove(discount);
 }
 };
 item.add(removeLink);
 removeLink.add(new SimpleAttributeModifier("onclick",
 "if(!confirm('remove discount for "
 + discount.getCheese().getName()
 + " ?')) return false;"));
 }

What, another custom component? That’s what happens once you get the hang of it:
custom components everywhere!

 The percentage field is implemented in listing 8.18.

public class PercentageField extends TextField {

 public PercentageField(String id) {
 super(id, double.class);
 }

Listing 8.17 Repeater’s populateItem implementation

Listing 8.18 Implementation of the percentage field

Another custom
component

Type is
double

221Summary
 public PercentageField(String id, IModel model) {
 super(id, model, double.class);
 }

 @Override
 public final IConverter getConverter(Class type) {
 return new IConverter() {

 public Object convertToObject(String value, Locale locale) {
 try {
 return getNumberFormat(locale).parseObject(value);
 } catch (ParseException e) {
 throw new ConversionException(e);
 }
 }

 public String convertToString(Object value, Locale locale) {
 return getNumberFormat(locale).format((Double) value);
 }

 private NumberFormat getNumberFormat(Locale locale) {
 DecimalFormat fmt = new DecimalFormat("##");
 fmt.setMultiplier(100);
 return fmt;
 }
 };
 }
}

If we had used a regular text field, we would have seen 0.20 or something similar for a
discount of 20%. That isn’t exactly user-friendly. The percentage field component
translates 0.20 to 20 and back again, so the user doesn’t have to calculate back and
forth. It uses a converter to perform that calculation, and the converter in turn uses a
decimal formatter.

 Converters are responsible for converting model values to user-facing output and
user input back to model values. The percentage field component sets up the con-
verter to be used for itself by overriding the getConverter method and making the
method final to prevent misuse. We’ll take another look at converters in chapter 13.

 We’ll leave the component’s markup and the implementation of the new discount
form to your imagination (or you can look it up in the source code that comes with
this book). It’s time to wrap up the chapter.

8.5 Summary
In this chapter, we looked at how to create custom reusable components for Wicket,
and why you would want to do so. The first few examples packaged component config-
uration into new classes. That can be an effective strategy to hide complexity, to
enforce consistency throughout your project(s), and to reduce code duplication.

 The locale-select component and date-time field component are examples of
generic components that can be used in many different contexts. The locale-select
component with a Reset link is an example of a composite component that acts as a

Fixed
converter

Conversion
exception

222 CHAPTER 8 Developing reusable components
single self-contained unit for its users. Users don’t have to know that the component
combines a drop-down menu and a link: a single line of Java code and a single line of
markup are enough to use the component.

 The date-time field extends that concept and is a composite component that par-
ticipates in form processing (it’s updated on form submits) and that automatically
updates its model depending on the input of its nested form components.

 The last example in this chapter created a domain-specific cheese store discount
list. It reused some of the components we developed earlier, and it showed how by
using component replacement, components can implement their own independent
means of navigation, even for editing data.

 In the next chapter, we’ll discuss Wicket resources, which you can use to include
things like images, JavaScript, and CSS references in your custom components.

Images, CSS, and scripts:
working with resources
Up to now, we’ve mainly been talking about components. As powerful as they are,
there are some things you can’t do with them. For example, you can’t render PDFs
with them, and they don’t provide a direct answer to how images or CSS files should
be handled.

 This is where Wicket resources come in. Wicket resources are objects that can
process requests independently from pages. They typically represent things like
images and files (for instance, JavaScript and CSS files); but as you’ll see in this
chapter, they aren’t limited to that.

 In the first part of this chapter, we’ll look at what we call packaged resources and
show how they can be used to develop custom components that ship with their own
images and other dependencies. After that, we’ll investigate three ways to use
Wicket resources to build functionality for downloading cheese discounts in a file

In this chapter:
■ Including images, scripts, and stylesheets

using packaged resources
■ Providing downloadable content with dynamic

resources
■ Integrating third-party libraries using resources
223

224 CHAPTER 9 Images, CSS, and scripts: working with resources
of comma-separated values (CSV). The final part of this chapter examines how you
can use Wicket resources to integrate third-party software that generates PDFs, images,
and so on.

 First, let’s look at a concept you’ll likely be using soon: packaged resources.

9.1 Using packaged resources
In the previous chapter, we developed a discount-list component with edit functional-
ity. Figure 9.1 shows this component in edit mode.

The link to remove a row currently displays the text [remove]. Our goal in this section is
to replace that text with an image, so that it looks like figure 9.2.

Doing so is straightforward if you know your HTML. If you have this link

click me

you replace the “click me” message with an image as follows:

Then, you place the image remove_icon.gif in the web application’s images subdirec-
tory, and you’re finished.

 But something doesn’t feel quite right in that last part. So far, we’ve been able to
keep our Java and HTML side by side and avoid the configuration hassle that character-
izes so many other Java frameworks. Now, we need to know that the component expects
the image to be in the web app directory, and make the image available. And this is just
one image, for one component. You can see that you’d end up spending a considerable
amount of time setting up dependencies if all components were written this way.

 For example, consider the date picker we use in the discount list. To attach a date
picker to a text field, all we need to do is this:

textField.add(new DatePicker());

If you investigate the date picker closely, you’ll find that it uses multiple images—the
clickable calendar icon that is rendered as part of the date picker, for instance—Java-
Script, and CSS dependencies. Yet you don’t have to copy or configure a single thing
to be able to use the date picker.

 The date picker ships with the dependencies it needs. The images, JavaScript, and
CSS files are put in the classpath (for example, directly in WEB-INF/classes or embedded

Figure 9.1

The discount-list component in edit mode

Figure 9.2

The discount-list component in edit mode,
now using an image for the Remove link

225Using packaged resources
in a jar file), and Wicket makes it possible for these dependencies to be accessed.
Wicket has a special terminology for this: packaged resources.

 To make the Remove icon a packaged
resource, we need to place it in—or rela-
tive to—the same package as the compo-
nent it’s meant for. You can see this for
the discounts list in figure 9.3.

 Note that you should configure your
IDE and build process to copy these
resources to the same classpath or jar file
it compiles the Java classes to. An IDE like
Eclipse does this by default.

 Next, we add the image to the link
and give it a wicket:id identifier:

The img tag is coupled to a component with the identifier icon. That component is
constructed and added to the link as follows:

removeLink.add(new Image("icon",
 new ResourceReference(DiscountsEditList.class, "remove_icon.gif")));

The resource reference is created with two parameters: the class that should serve as a
base from which to perform a relative lookup, and the resource’s relative name.

 Wicket looks for the remove_icon.gif file in the same package where the Discount-
EditList class resides.

NOTE The use of navigational double dots (..) to navigate up one level cur-
rently isn’t supported, but going into subdirectories is. For instance, this
is permitted:
new ResourceReference(MyClass.class, "some/sub/directory/
my_image.jpg")

Instead of using a resource reference, you can use a resource directly. The class to use
when you’re referencing resources from the classpath is PackageResource:

removeLink.add(new Image("icon",
 PackageResource.get(DiscountsEditList.class, "remove_icon.gif")));

This class is used internally by resource references, and in many cases it can be used
instead of them. Resource reference is primarily an abstraction that hides how to get the
resource; it offers the slight advantage that if you set the locale or style, or invoke
the invalidate method directly on it, it recalculates its resource without losing the
reference. If you’re using a packaged resource directly, and you change the locale or
style, you have to get a new packaged resource object yourself.

 Including packaged resources is such a common task that Wicket supports auto-
linking for images, JavaScript files, and CSS files.

Figure 9.3 The remove_icon image is placed
in the package.

226 CHAPTER 9 Images, CSS, and scripts: working with resources
9.1.1 Including packaged resources using auto-linking

You already learned that you can use auto-link regions to automatically set the href
attributes of anchor tags (<a>) that are nested in each region. Wicket determines
whether the href attributes match any existing pages; if they do, Wicket replaces the
href attributes to refer to those pages.

 In addition to links, auto-link regions can also be applied to <link> tags (CSS),
script references, and images. Instead of explicitly adding an image component as we
just did, we can include the image in an auto-link region like this:

<wicket:link>

</wicket:link>

No Java code is needed. Wicket tries to match the value of the src attribute with a
resource relative to the component that loaded the markup (DiscountsEditList). If
src can’t be resolved to a packaged resource, Wicket leaves the attribute alone. In this
example, it matches the image we’ve placed in the package of the page, so Wicket
changes the attribute value to something like this:

The _en is part of how Wicket handles localization and can be ignored for now; Wicket
automatically falls back to the base name (remove_icon.gif) when it loads the image.

 Packaging resources is a great way to develop self-contained components. We’ll use
this technique in the next chapter, which is about developing rich components. In the
next section, we’ll develop new functionality for the discounts list to show a very differ-
ent use of Wicket resources.

9.2 Building export functionality as a resource
In this section, we’ll build functionality for exporting the discounts list to a CSV file.
We’ll add a link to the main discounts panel that, when clicked, downloads the discounts
in CSV form to the client. When we’re finished, the panel will look like figure 9.4.

 This section discusses three distinct ways to achieve this result: with a component-
scoped resource, with a shared resource, and without a resource. First, let’s imple-
ment the resource.

Figure 9.4

The discounts panel with a link for
exporting the discounts to a CSV file

227Building export functionality as a resource
9.2.1 Creating the resource

The first thing we need to do is build a function in the database class that creates a
string with the discounts separated by commas (see listing 9.1).

public CharSequence exportDiscounts() {
 StringBuilder b = new StringBuilder();
 for (Discount discount : discounts) {
 b.append(discount.getCheese().getName()).append(',');
 ... (etc)
 b.append(discount.getDescription()).append('\n');
 }
 return b;
}

Next, we need to implement the Wicket resource that directly streams these exports
(see listing 9.2).

WebResource export = new WebResource() {

 @Override
 public IResourceStream getResourceStream() {
 CharSequence discounts = MyDataBase.getInstance()
 .exportDiscounts();
 return new StringResourceStream(discounts, "text/csv");
 }

 @Override
 protected void setHeaders(WebResponse response) {
 super.setHeaders(response);
 response.setAttachmentHeader("discounts.csv");
 }
};
export.setCacheable(false);

WebResource is a base resource class. The getResourceStream method is abstract in
this base class, so we had to define it here. This method must return a resource
stream, which in turn is responsible for producing whatever is to be streamed to the
client. Here, we return a convenience implementation of the resource stream inter-
face, StringResourceStream. That implementation produces the string passed in dur-
ing construction; the second argument—the content type—is sent to the client so that
it can properly interpret the stream.

 The export resource also overrides the setHeaders method, in which it calls one
of WebResponse’s methods: setAttachmentHeader. This method sets a special header
in the response: Content-disposition: attachment; filename=x, where x will be
replaced by the argument that is passed in. Setting this header triggers the browser to
pop up a download dialog as well as set the selected name of the file to save the down-
load to.

Listing 9.1 Method that produces a CSV representation of the discounts

Listing 9.2 Resource that streams the CSV representation of the discounts

Trigger download
dialog

228 CHAPTER 9 Images, CSS, and scripts: working with resources
 That’s the resource. Next, we need to create a link that users can click to download
the export. You can expose the resource in two ways: through a component or in a
slightly more direct manner as a shared resource. The next section shows how to
expose the resource using a component.

9.2.2 Letting a component host the resource
Wicket has a convenient link component for referencing resources: ResourceLink.
It’s used like this:

new ResourceLink("exportLink", export);

The link hosts the resource. The href attribute of the export link is rendered as follows:

?wicket:interface=:1:discounts:exportLink::IResourceListener::

When the link is clicked, Wicket looks up the component that is reachable with the
component path 1:discounts:exportLink, which arrives at the export link. Wicket then
executes the method onResourceRequested of IResourceListener on it (ResourceLink
implements that interface). The implementation of that method in ResourceLink dele-
gates the call to the embedded Wicket resource—the export resource. Figure 9.5
shows this process.

 The resource is available only through a host component, which is fine in this case
but may not always be what you want. The two primary disadvantages of component-
hosted resources are that they aren’t bookmarkable (which means they can’t be
crawled, but also can’t be cached by browsers), and they inherit the fact that compo-
nents are synchronized on the session (chapter 2 covers thread-safety).

 In the next section, we’ll look at resources that can be reached independently
from components: shared resources.

exportLink:
ResourceLink

export:
WebResource

onResourceRequested

onResourceRequested

(stream result)

Figure 9.5 The ResourceLink component delegates requests to the real resource.

229Building export functionality as a resource
9.2.3 Making the export available as a shared resource

Shared resources are resources that don’t need host components. They’re stored in a
special object of type SharedResources, which is managed by the application class.
Unlike component-hosted resources, they have stable URLs, which makes them suit-
able for indexing by web crawlers and caching by web browsers. And—especially
important with images and resources such as JavaScript or CSS files—they aren’t syn-
chronized on the session, which means they can be loaded asynchronously.

 The packaged resources you saw earlier in this chapter are an example of shared
resources. Unlike the application-wide shared resources we’re discussing now, you
don’t need to explicitly configure packaged resources, because Wicket tries to dis-
cover them when their URLs are requested.

 Lazy initialization is applicable to packaged resources—Wicket loads them only
when they’re requested (the first time) by a page or component being rendered. If
you want to make other resources globally available, you can get access to the shared-
resource object directly like this:

SharedResources res = Application.get().getSharedResources();

One way to register shared resources is to add them to the application’s shared
resources object. To add the Export resource, for instance, we do this:

WebResource export = ... (like earlier example)
Application.get().getSharedResources().add("discounts", export);

The resource is then available through a stable URL (/resources/discounts), indepen-
dent of components.

 If we want to make this shared resource available through a link that needs to
appear on a page or, for example, on our discount panel, we can change the Discount-
Panel code as follows:

ResourceReference ref = new ResourceReference("discounts");
add(new ResourceLink("exportLink", ref));

The single-argument resource-reference constructor you see here references applica-
tion scoped/shared resources by name. The generated href attribute contains this:

resources/org.apache.wicket.Application/discounts

The resources/ bit is a reserved path in Wicket applications. The form of the
resource URLs is as follows:

"resources/" scope "/" name

scope is the class that functions as the root for looking up the resource in the class-
path, and name is either the name of a packaged file or an arbitrary name when the
resource is registered as a shared resource at the application level. As you may have
guessed, the scope Application is always recognized as a shared resource.

230 CHAPTER 9 Images, CSS, and scripts: working with resources
NOTE It’s important to realize that shared resources aren’t thread-safe. For this
example, that isn’t a problem, because the discounts export isn’t depen-
dent on specific sessions, and the resource doesn’t have mutable state.
But if you ever need shared resources that must be thread-safe, look at
DynamicWebResource. An excellent example is UploadStatusResource,
which is used by the Ajax-enabled upload progress bar available in the
Wicket extensions project.

If you want to make resources globally accessible, you need to register them as shared
resources. In the next section, we’ll look at how to do this.

9.2.4 Initializing the shared resource

Shared resources must be registered before they’re available through their own URLs.
One way to do this is to add the resource in the application’s init method. But doing
so conflicts with the idea of self-contained components. This is especially true if the
resource is part of a component, which may be provided by a third party. You don’t
want to keep track of all the resources needed by various components just because you
have to register them properly in one place.

 Fortunately, there is a way to automatically initialize components during startup:
Wicket initializers.
INITIALIZERS

When Wicket starts up an application, it scans the classpath roots, looking for files
named wicket.properties. It reads every wicket.properties file it finds, and it instanti-
ates and executes the initializers (of type IInitializer) defined in those files.

 For our example, the wicket.properties file (which should be packaged in the root
of the classpath) contains this line:

initializer=my.package.DiscountsExport$Initializer

The initializer can be implemented like this:

public class DiscountsExport extends WebResource {

 public static class Initializer implements IInitializer {

 public void init(Application application) {
 SharedResources res = application.getSharedResources();
 res.add("discounts", new DiscountsExport());
 }
 }
 ...

Resources added this way are available immediately after the Wicket application is
started. You can type the path to the resource (resources/org.apache.wicket.Applica-
tion/discounts) in your browser and get it directly.

 Note that you can define only one IInitializer per library (jar). If you want to
initialize multiple resources in a library, you can implement the IInitializer to dele-
gate to other initializers:

231Building export functionality as a resource
public class MyInitializer implements IInitializer {
 public void init(Application application) {
 new FooInitializer().init(application);
 new BarInitializer().init(application);
 }
}

This first half of the chapter has given you an idea how resources work. Sometimes
you can achieve the same thing without relying on Wicket resources. Just for the heck
of it, let’s look at how to implement the Export function using a special request target.

9.2.5 An alternative implementation

If you ever want to stream something to the client, such as part of a form submit, you
can use an alternative approach to achieve what you’d otherwise do with a component-
hosted resource. Remember from chapter 2 that request targets are responsible for
what is streamed back to the client? You can use that knowledge and write a variant of
the Export function that directly sets a request target as part of handling a form sub-
mit. You can see this implemented in listing 9.3.

Form form = new Form("exportForm");
add(form);
form.add(new SubmitLink("exportLink", new Model("export")) {

 @Override
 public void onSubmit() {
 CharSequence export = MyDataBase.getInstance()
 .exportDiscounts();
 ResourceStreamRequestTarget target =
 new ResourceStreamRequestTarget(
 new StringResourceStream(export, "text/plain"));
 target.setFileName("discounts.csv");
 RequestCycle.get().setRequestTarget(target);
 }
});

Request targets are typically resolved by the implementation of IRequestCycle-
Processor’s resolve method; but as you can see, you can set one directly.

 The request cycle holds a stack of request targets; every time one is set, the new
request target is put on top of the stack. When Wicket renders the request, the request
target from the top of the stack is popped and used for rendering (Wicket cleans up
all the request targets on the stack so resources can be freed if necessary).

 Using request targets directly is powerful. But resources are more suitable for
reuse, because they can be defined as shared resources, and the same resource can be
exposed in multiple ways.

 Resources are great for creating components with dependencies, such as images
and stylesheets, and for creating export functionality as we just did. They’re also suit-
able for integrating third-party libraries, as we’ll investigate in the next section.

Listing 9.3 An export form

Set request
target directly

232 CHAPTER 9 Images, CSS, and scripts: working with resources
9.3 Resources and third-party libraries
As you’ve seen, resources can handle requests independently and stream responses
back to the client any way they like. This makes them suitable for streaming content
that isn’t rendered by Wicket. Such libraries, for instance, can generate PDF reports,
Excel sheets, Rich Text Format (RTF) documents, or images. Using Wicket resources,
you can easily integrate such libraries. As an example, in this section we’ll look at how
to integrate a third-party library called library JCaptcha.

9.3.1 A JCaptcha image component

Captcha, which is an acronym for Completely Auto-
mated Public Turing test to tell Computers and
Humans Apart, and which is trademarked by Car-
negie Mellon, is an authentication test to deter-
mine whether users are human. It’s a recent
effort to fight spam, particularly on public forms
like blog comments. Figure 9.6 shows a captcha
form in action.

 With a little effort, you should be able to recognize the text whiker in the image on
the form. Because the image is distorted in several ways, it’s difficult for bots (com-
puter programs) to “read” the text. If the text entered in the form doesn’t match the
image, you can assume it was submitted by a bot on behalf of some unscrupulous
spammer trying to advertise her wares.

 JCaptcha is a versatile open source Java implementation that provides an efficient
image generator and a secure validation mechanism. You can integrate JCaptcha with
an application by using, for instance, a servlet. Listing 9.4 shows a slightly modified
version of the servlet that JCaptcha recommends on its website.

public class ImageCaptchaServlet extends HttpServlet {

 private static final ImageCaptchaService captchaService =
 new DefaultManageableImageCaptchaService();

 protected void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 byte[] captchaChallengeAsJpeg = null;
 ByteArrayOutputStream jpegOutputStream =
 new ByteArrayOutputStream();
 String captchaId = request.getSession(true).getId();
 BufferedImage challenge = captchaService.getImageChallengeForID(
 captchaId, request.getLocale());
 JPEGImageEncoder jpegEncoder = JPEGCodec
 .createJPEGEncoder(jpegOutputStream);
 jpegEncoder.encode(challenge);
 captchaChallengeAsJpeg = jpegOutputStream.toByteArray();

Listing 9.4 JCaptcha integration using a servlet

Figure 9.6 Captcha authentication

Handle POST and
GET requests

233Resources and third-party libraries
 response.setHeader("Cache-Control", "no-store");
 response.setHeader("Pragma", "no-cache");
 response.setDateHeader("Expires", 0);
 response.setContentType("image/jpeg");
 ServletOutputStream os = response.getOutputStream();
 os.write(captchaChallengeAsJpeg);
 os.flush();
 os.close();
 }
}

That code looks straightforward, doesn’t it? If you want to use this servlet to integrate
JCaptcha with your Wicket application, you can. But you may prefer to use Wicket
resources instead. The servlet must be configured separately, whereas a Wicket resource
is a seamless part of a Wicket application. You also need to know how to determine the
URL to the servlet, which in turn depends on how the servlet was configured.

 Listing 9.5 shows the same thing using a Wicket resource.

public abstract class CaptchaImage extends Image {

 public CaptchaImage(MarkupContainer parent, String id,
 final String challengeId) {

 super(id);
 setImageResource(new DynamicImageResource() {
 protected byte[] getImageData() {
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 BufferedImage challenge = getImageCaptchaService()
 .getImageChallengeForID(challengeId,
 Session.get().getLocale());
 JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(os);
 try {
 encoder.encode(challenge);
 return os.toByteArray();
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
 });
 }

 protected abstract ImageCaptchaService getImageCaptchaService();
}

We add the abstract getImageCaptchaService to determine the actual implementa-
tion of the service. We generally prefer abstract methods over properties because they
save memory by avoiding extra object references.

 The Wicket Image that we extend requires an object of type ImageResource; we
provide an implementation that can dynamically generate the image as an implemen-
tation detail. Our resulting captcha image component expects a challenge ID to be
passed in, in the constructor: it’s likely that the identifier will be created from outside

Listing 9.5 JCaptcha image that uses a Wicket resource internally

Prepare HTTP
headers

Write to output
stream

Called when rendering
DynamicImageResource

234 CHAPTER 9 Images, CSS, and scripts: working with resources
the component, because it will also be used to validate user input. The resource hides
details like getting, writing to, and closing the response, and how to prevent the
browser from caching the image. But probably the greatest advantage of using a
resource in such a case is that you don’t have to worry about configuration and which
URL to use. Just make sure you have the JCaptcha dependency in the classpath, and
you’re ready to go.

 That covers the resource part of it. Let’s extend this discussion and create a com-
plete reusable component, so you get another look at how to build custom components.

9.3.2 Implementing a complete JCaptcha form

To make this a complete component, we need a text field for the input and a form for
submitting that input. It makes sense to let the text field do the validation, because
the input it receives is what we want to check. Listing 9.6 shows how the JCaptcha text
field can be implemented.

public abstract class CaptchaInput extends TextField {

 public CaptchaInput (String id,
 IModel model, final String challengeId) {
 super(id, model);
 add(new AbstractValidator() {
 @Override
 protected void onValidate(IValidatable validatable) {
 if (!getImageCaptchaService().validateResponseForID(
 challengeId, validatable.getValue())) {
 onError(this, validatable);
 }
 }
 });
 }

 protected abstract ImageCaptchaService getImageCaptchaService();

 @Override
 protected void onComponentTag(final ComponentTag tag) {
 super.onComponentTag(tag);
 tag.put("value", "");
 }

 protected abstract void onError(
 AbstractValidator validator, IValidatable validatable);
}

The text input component adds validation on the captcha form as an implementation
detail b. It uses the same trick as our captcha image did in getting the captcha image
service c, and it introduces even more indirection by defining an abstract method
called onError d. By doing this, we push responsibilities to the client while, at the
same time, providing for flexible reuse of the component.

 Listing 9.7 defines the form that uses the image and input components.

Listing 9.6 JCaptcha input component that includes validation

Validation is
implementation detail

b

Same old
indirection

c

Clear value each
request

Force clients to
handle errors

d

235Resources and third-party libraries
public abstract class CaptchaForm extends Panel {

 private final class CaptchaInputForm extends Form {

 private String challengeResponse;

 public CaptchaInputForm(String id) {
 super(id);
 String challengeId = UUID.randomUUID().toString();
 add(new CaptchaImage("captchaImage", challengeId) {
 @Override
 protected ImageCaptchaService getImageCaptchaService() {
 return CaptchaForm.this.getImageCaptchaService();
 }
 });

 add(new CaptchaInput("response", new PropertyModel(this,
 "challengeResponse"), challengeId) {
 @Override
 protected ImageCaptchaService getImageCaptchaService() {
 return CaptchaForm.this.getImageCaptchaService();
 }

 @Override
 protected void onError(AbstractValidator validator,
 IValidatable validatable) {
 CaptchaForm.this.onError(validator, validatable);
 }
 });

 add(new FeedbackPanel("feedback"));
 }

 @Override
 protected void onSubmit() {
 onSuccess();
 }
 }

 public CaptchaForm(String id) {
 super(id);
 add(new CaptchaInputForm("form"));
 }

 protected abstract ImageCaptchaService getImageCaptchaService();

 protected void onError(AbstractValidator validator,
 IValidatable validatable) {
 validator.error(validatable, "captcha.validation.failed");
 }

 protected void onSuccess() {
 info(getLocalizer().getString("captcha.validation.succeeded",
 this));
 }
}

Listing 9.7 JCaptcha form

Shared
challenge
identifier

b

Indirectionc

236 CHAPTER 9 Images, CSS, and scripts: working with resources
The challenge identifier is generated during construction b and used by both the
image and input component. Again, we use indirection to determine the captcha
image server we use, and we use indirection with a default implementation for han-
dling success/errors so users can override that if they wish c.

 The HTML code for the form is straightforward, as you can see in listing 9.8.

<wicket:panel>
 <form wicket:id="form">
 <p></p>
 <p><wicket:message key="captcha.provide.input" />

 <input wicket:id="response" type="text" />
 <input type="submit" value="submit" /></p>
 <div wicket:id="feedback">[feedback here]</div>
 </form>
</wicket:panel>

Finally, we can use the component as shown in listing 9.9.

public class CaptchaPage extends WebPage {

 @SpringBean
 private ImageCaptchaService captchaService;

 public CaptchaPage() {
 add(new CaptchaForm("captchaForm") {

 @Override
 protected ImageCaptchaService getImageCaptchaService() {
 return captchaService;
 }
 });
 }
}

We depend on Spring to provide an appropriate instance of the captcha image ser-
vice. (We’ll look into Spring integration in chapter 13.)

9.4 Summary
Wicket resources are a great way to make things like images and JavaScript files avail-
able in your web application through Wicket. You can make them accessible either
through host components or as shared resources. Components can automatically reg-
ister shared resources they depend on using initializers defined in wicket.properties
files—you don’t have to do this explicitly using these components. Packaged resources
are the only shared resources that don’t need to be explicitly registered.

 In this chapter, we enhanced our cheese shop’s discount list with export-as-text
functionality, and we replaced the text of the link to remove discounts with an image
that is packaged with the component. You saw three ways to implement the Export

Listing 9.8 Markup of the JCaptcha form

Listing 9.9 Using the JCaptcha form

Retrieve Spring
service

237Summary
function: using a resource hosted by a component, using a shared resource, and using
no resource (using a request target directly).

 In the second part of this chapter, we looked at how resources can help with third-
party library integration. We created a reusable JCaptcha image component, which we
later added to a reusable JCaptcha form.

 We’ll make extensive use of resources, particularly packaged resources, in the next
chapter, which is about rich components and Ajax.

Rich components
and Ajax
Chapter 8 introduced you to creating custom components with Wicket. In the sec-
ond half of that chapter, we developed a discount-list component, which consists of
multiple panels and has different modes of operation (list, edit/delete, and add).

 This chapter is about rich components, which typically means widgets that have
richer behavior than basic ones in HTML. Examples are lists where you can reorder
elements by dragging and dropping them, maps that load data in the background
when you scroll, and text fields that provide a list of suggestions while you type.

 The term rich components can apply to components that use anything from
DHTML (typically HTML + JavaScript + CSS) to Flash to Java applets, and so forth.
This book focuses on DHTML because it has the broadest support of all the options.

In this chapter:
■ Using Ajax components and behaviors to create

responsive web UIs
■ Contributing JavaScript and CSS to the <head>

section with header contributors
■ Integrating third-party JavaScript libraries in

your custom components
■ Gotchas when using Ajax in your applications
238

239Asynchronous JavaScript and XML (Ajax)
 In this chapter, we’ll explore a few things that will enable you to create killer com-
ponents. You’ll learn about the different ways in which you can enrich your compo-
nents using JavaScript, CSS, and packaged resources, and you’ll learn how to use and
extend Wicket’s Ajax capabilities.

 As the main example of this chapter, we’ll build on the discounts list from chapter 8.
We’ll revamp that component to display Wicket’s Ajax capabilities and end up with a
component that allows for a different user experience. But before we get to that, we’ll
look into what Ajax is and how you can use one of the enablers of Ajax support for
header contributions.

10.1 Asynchronous JavaScript and XML (Ajax)
Suddenly, somewhere in early 2005, there was a lot of talk about a fancy new tech-
nique to make web applications more responsive. The term Ajax was coined by Jesse
James Garret in his famous article “Ajax: A New Approach to Web Applications.” In it,
he describes how the company he works for, Adaptive Path, has been combining a set
of technologies to get a more responsive UI. Shortly after the release of this article,
Ajax was hyped to incredible heights. A plethora of new websites, books, magazines,
courses, frameworks, and conferences dedicated to Ajax sprang up. Ajax was defined
as a crucial part in another revolution: Web 2.0. Some famous applications served as
references of what could be done with Ajax, such as Google Suggest, Google Maps,
and Flickr. Today, Ajax is a fully accepted part of the developer’s toolbox, although
debates over the merits and dangers of this technology still rage.

 Let’s investigate what Ajax stands for.

10.1.1 Ajax explained
Ajax is an acronym for Asynchronous JavaScript and XML. It stands for a whole range
of techniques that have the same goal: letting browsers perform server round-trips in
the background so that web pages can be updated without doing a full reload, thus
providing a more fluent user experience (as compared to doing full page reloads).

 In his article, Jesse James Garrett lists the following technologies as the typical
(rather than required) enablers for Ajax:

■ Standards-based presentation using XHTML and CSS
■ Dynamic display and interaction using the DOM
■ Data interchange and manipulation using XML and XSLT
■ Asynchronous data retrieval using XMLHttpRequest
■ JavaScript binding everything together

The main difference between normal requests and Ajax requests is that normal
requests cause the whole browser window (or frame) to be refreshed, showing a blank
page while loading is in progress. With Ajax, requests are done in the background by
an Ajax engine (a script that is part of the page), and responses are interpreted by that
engine and typically used to replace part of the page.

 Figure 10.1 shows a traditional request/response cycle.

240 CHAPTER 10 Rich components and Ajax
Figure 10.2 shows schematically how an Ajax request/response works.
 The user interface here consists of the usual HTML elements: inputs, forms, links,

and so forth. Instead of using those elements unaltered, we define event handlers that
communicate with the Ajax engine. For instance, here’s an Ajax version of a text field:

<input type="text" name="foo" value="bar" />

If it makes a round-trip to perform validation when the value is changed, it looks
like this:

<input type="text" name="foo" value="bar"
 onchange="callToAjaxEngine(this); " />

browser

user interface

server(s)

UI framework

HTML & CSS
HTTP Requests

Figure 10.1

A traditional request/response pair

browser

user interface

server(s)

UI framework, Web Services, et-cetera

XML
HTTP Requests

user interface

JavaScript

HTML & CSS (& DOM)

Figure 10.2

An Ajax request/response pair

241Asynchronous JavaScript and XML (Ajax)
A non-Ajax variant that works similarly is as follows:

<input type="text" name="foo" value="bar"
 onchange="myform.submit();" />

This has a couple of disadvantages, compared to an Ajax round-trip:

■ The user has to wait for the entire round-trip to finish, possibly staring at a
blank window and sandbox in the meanwhile.

■ Although we’re interested in validating only one text field, we either have to val-
idate the whole form or remember to send back intermediate information that
enables us to restore the values of the other form elements to as they were when
the request was initiated. This is a waste of the server’s CPU; and the request
handling is more complex than it is with Ajax.

■ Instead of receiving a response that only indicates whether the text field validated,
possibly accompanied by extra information like an error message in case valida-
tion failed, we now get the HTML of the whole page, which is a waste of bandwidth.

This example should convince you that using Ajax is a good idea in at least some
cases. But it has some potential disadvantages you should be aware of:

■ Ajax limits the range of browsers and browser configurations you can use. The
client must allow JavaScript to be executed. In addition, depending on how well
the Ajax engine is built, all browsers have their own quirks that the Ajax engine
must work around. With normal CSS and HTML, quirks usually result in
improper display; in other cases, the failure to have a workaround in place to
handle a quirk often results in the Ajax functionality not working.

■ When you’re using Ajax, you don’t automatically support standard browser fea-
tures, like the Back button, bookmarkability (the URLs don’t change when exe-
cuting Ajax requests), and so forth.

■ With Ajax, it isn’t always obvious that a request is in progress and waiting for an
answer. This can result in users frantically clicking away and getting frustrated
because they think the application doesn’t work. The Ajax engine needs a
queue to ensure orderly processing in case requests are issued while a request is
running. The engine may be able to prevent new requests while running cer-
tain requests. On top of this, many Ajax engines provide a busy indicator to
notify the user that a request is being processed. This may not seem like a disad-
vantage, but compared to the traditional model, more thought definitely
should go into how the UI should react.

■ Ajax relies heavily on JavaScript executed in the browser. Compared with server-
side Java, this is typically a lot harder to debug. And the fact that JavaScript isn’t
strongly typed makes it vulnerable to typos, wrong variables passed into meth-
ods, and so forth.

Don’t let all this scare you away. Just be pragmatic, and evaluate whether Ajax is useful
based on the UI requirements.

242 CHAPTER 10 Rich components and Ajax
 Wicket’s approach to Ajax is that Ajax is optional. By default, Wicket follows the
traditional approach; but adding Ajax support to both existing traditional compo-
nents and new components from scratch is easy, and you can do so several ways.
Wicket comes with its own robust Ajax engine implementation and ships with a decent
range of reusable Ajax behaviors and components. Wicket leaves enough doors open
to roll your own support in case you aren’t happy with what the framework provides.

 The next section will provide a short overview of what Wicket’s Ajax support looks
like, so you won’t be lost when we start revamping the discount list. Later in this chap-
ter, we’ll delve deeper so you’ll know what strategies are available for building custom
Ajax components or plugging in different Ajax engines.

10.1.2 Ajax support in Wicket

The key element of Ajax support is the Ajax engine that runs in the browser. Such an
engine usually consists of one or more JavaScript libraries.

 Since Ajax became popular, several specialized frameworks have emerged, includ-
ing Dojo, Scriptaculous, Yahoo User Interface (YUI) library, and Direct Web Remot-
ing (DWR). These libraries can all be used with Wicket; but because they’re generic
frameworks in their own right, you’ll probably need to write bridging code to let the
two frameworks (the Ajax engine and Wicket) work together seamlessly. You can find
Ajax implementations for several of these projects in the third-party Wicket Stuff com-
ponent repository (http://wicketstuff.org).

 Wicket ships with a specialized Ajax engine designed to be used with Wicket’s
server-side components and behaviors.
WICKET’S DEFAULT AJAX ENGINE

The main goal of Wicket’s Ajax engine is to integrate well with Wicket components
and behaviors. This is in contrast to a JavaScript/Ajax engine like Dojo, which has a
broad scope and which doesn’t support any particular server-side framework. Wicket’s
Ajax engine is designed to be as minimal as possible and thus isn’t as feature rich as
some other Ajax engines. But the supported functionality should be sufficient for
most common cases. The engine is geared toward the following:

■ Message-handling between the client (web browser) and server
■ Repainting (replacing) and hiding components
■ Executing custom JavaScript sent by Ajax responses
■ Dynamically adding JavaScript and CSS to the page
■ Providing the means to debug/track the engine’s workings
■ Throttling and timeout functionality

This engine is implemented in wicket-ajax.js, which you can find in the org.apache.
wicket.ajax package. Wicket also ships with the wicket-ajax-debug.js and wicket-ajax-
debug-drag.js JavaScript components in the same package; together they provide a
simple but effective debugger that shows you information about the traffic the engine
handles. Figure 10.3 shows a screenshot.

243Asynchronous JavaScript and XML (Ajax)
Another great tool when you’re working with Ajax is the Firebug plug-in for the
Mozilla Firefox web browser. Firebug is currently the best JavaScript debugger for cli-
ent-side debugging. Firebug will help you in dealing with client-side software develop-
ment, but it won’t iron out cross-browser issues.

 The advantage of using Wicket’s Ajax JavaScript engine over more generic engines
like Dojo is that it integrates better with Wicket. The engine understands the kind of
server code it’s communicating with, so you can avoid writing plumbing code as you’d
have to do with other frameworks.

 In addition to the client-side Ajax engine, Wicket’s Ajax support has two important
enablers: header contributions and the ability of behaviors to receive requests inde-
pendently. We’ll look more closely at these enablers later this chapter.

 First, let’s examine a few examples of Ajax components that are shipped with Wicket.

10.1.3 Ajax components

It’s easiest for most end users to look up whether an existing Wicket component does
what they want. Wicket ships with quite a few high-level components. Most of the Ajax
components supported as part of the core project can be found in the packages
org.apache.wicket.ajax.* and org.apache.wicket.extensions.ajax.*. As usual,
the Examples project that ships with the Wicket distribution covers many of them.

 Here are a few examples of Ajax components that are part of the distributions (in
no particular order):

■ AjaxLink—A generic link that does a partial request instead of a full round-trip.
■ AjaxSubmitLink and AjaxSubmitButton—Partial requests that submit the form

they’re linked to.
■ AjaxCheckBox—A check box that issues a partial request when its value is

changed (the user selects it).
■ AjaxEditableLabel—A label that, when clicked, changes to a text field so the

value can be edited (you’ll see more from this component later in this chapter).

Figure 10.3 Wicket’s Ajax debug window

244 CHAPTER 10 Rich components and Ajax
■ AutoCompleteTextField—A text field that offers choices when you start typing
in it. It was made famous by Google Suggest. Finally, web applications got a
smarter combo-box component without having to rely on Java applets, Flash, or
other technologies.

You can use Wicket’s Ajax components like any other Wicket component. From an
end user’s point of view, there is no difference between Ajax components and normal
components, other than Ajax components result in partial page updates rather than
full page loads.

 Most of the Ajax components shipped with Wicket’s distribution work with a spe-
cial request target: AjaxRequestTarget. This request target is typically used as an
argument of Ajax component callback methods. Listing 10.1 uses an Ajax link.

private int counter = 0;

public MyPage() {
 super(new CompoundPropertyModel(this));
 final Label counterLabel = new Label("counter");
 add(counterLabel);
 counterLabel.setOutputMarkupId(true);
 add(new AjaxLink("counterLabelLink")
 @Override
 public void onClick(AjaxRequestTarget target) {
 counter++;
 target.addComponent(counterLabel);
 }
 });
}

Here we define an Ajax link that increments MyPage’s counter variable. Like normal
links, AjaxLink components have an onClick method to do the real work. In addition
to incrementing the counter, onClick’s implementation adds a component to the ren-
der queue. Ajax request targets have a special method for that: AjaxRequest-
Target#addComponent. It ensures not only that the provided component is rendered
using its current state, but also that the corresponding HTML tags that now reside in
the client’s browser are replaced by the fresh ones.

 It’s important to instruct Wicket to generate markup identifiers by setting the output-
MarkupId flag on the components you want to re-render with Ajax requests to true
(setOutputMarkupId). If you set that flag, Wicket outputs the unique component
path of that component in its HTML identifier attribute: for example, <a hef="..."
wicket:id="foo" id="foo">. This identifier can then be used with JavaScript, and
thus by an Ajax engine, to locate tags in the DOM that browsers use to keep track of
the HTML document’s structure. If you don’t set the component to render its markup
identifier, the Ajax engine won’t be able to locate the tag linked to a component. And
if the tag can’t be located, its contents can never be replaced.

Listing 10.1 Using the AjaxLink component

Always output
markup id with Ajax

Re-render
label

245Asynchronous JavaScript and XML (Ajax)
 AjaxRequestTarget has more useful methods for working with Ajax. Another con-
venient method in the Ajax request target is appendJavascript. For example:

@Override
public void onClick(AjaxRequestTarget target) {
 target.appendJavascript("alert('hello!')");
}

The JavaScript you add to an Ajax target using the appendJavascript method is exe-
cuted on the client when the Ajax reply is interpreted. In this case, that results in dis-
playing an alert box (JavaScript alert function) containing the text hello!

 Now you’ve seen how to use Wicket’s Ajax components. These components are
convenient, but components aren’t always the best method for adding Ajax behavior.
A more flexible approach uses Ajax behaviors. Most Ajax components use Ajax behav-
iors internally to implement their functionality.

10.1.4 Ajax behaviors

Ajax behaviors are those that can receive Ajax requests. Such behaviors imple-
ment the IBehaviorListener interface and typically also IHeaderContributor. The
IBehaviorListener interface can be implemented by behaviors that want to be
able to receive requests directly. It has a single method for this purpose: onRequest.
You use header contributions to include JavaScript and CSS resources in the page
in which components and behaviors are placed. We’ll look further at that later
this chapter.

 Behaviors provide a flexible means of constructing functionality (using composi-
tion rather than inheritance). Ajax is triggered through JavaScript event handlers like
onclick, onchange, and the like—attributes you typically set using behaviors.

 Ajax behaviors should extend AbstractAjaxBehavior, which, in addition to
implementing the behavior listener and header contribution interfaces, takes care
of some common behaviors. It ensures that any Ajax behavior is bound to only one
component and provides access to that component so that it can be used later—for
example, to get the markup identifier or the model value. AbstractAjaxBehavior
also provides a method to calculate the callback URL (getCallbackUrl), and it pro-
vides adapter methods for the interface methods of the behavior listener and
header contributor interfaces. You have to override only the methods you’re inter-
ested in.

 Wicket’s default Ajax engine ships with extensive server-side support. The base
class of Wicket’s Ajax engine behaviors is AbstractDefaultAjaxBehavior, which you
can find in the package org.apache.wicket.ajax. That package contains the core of
Wicket’s Ajax engine, including the JavaScript libraries in wicket-ajax.js and the
two JavaScript files that contain debugging functionality for the engine. Abstract-
DefaultAjaxBehavior takes care of properly including the Ajax engine in pages, and
it prepares incoming requests by creating and activating an Ajax request target.

 Figure 10.4 shows this class and a few implementations.

Executed
on client

246 CHAPTER 10 Rich components and Ajax
We’ll look into how you can create custom Ajax behaviors later in this chapter. For
now, we’ll examine a few examples:

■ AjaxSelfUpdatingTimerBehavior—Triggers a component to be redisplayed
after a certain interval.

■ AjaxFormComponentUpdatingBehavior—Updates the model of the form com-
ponent the behavior is attached to whenever the specified client event—typi-
cally onchange—occurs. Used, for instance, by AjaxCheckBox.

■ AjaxFormSubmitBehavior—Submits the form this behavior is coupled to when the
specified client event occurs. Used by AjaxSubmitButton and AjaxSubmitLink.

■ AjaxFormValidatingBehavior—A specialization of form-submit behavior that
triggers validation of the form when the specified client event occurs.

There are many other Ajax behaviors, and their numbers are growing almost by the
day. You can often use them like regular behaviors. Listing 10.2 shows an Ajax behav-
ior used in one of the Ajax examples that ships with Wicket.

public class ClockPage extends WebPage {

 public ClockPage() {

 TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");
 Clock clock = new Clock("clock", tz);
 add(clock);
 clock.add(new AjaxSelfUpdatingTimerBehavior(Duration.seconds(5)));
 }
}

The clock component is defined like this:

public class Clock extends Label {

 private static class ClockModel extends AbstractReadOnlyModel {

 private DateFormat df;

 public ClockModel(TimeZone tz) {
 df = DateFormat.getDateTimeInstance(

Listing 10.2 Example of a self-updating (Ajax) timer behavior

AbstractAjaxBehavior

AbstractDefaultAjaxBehavior

AbstractAutoCompleteBehavior

AutoCompleteBehavior

AbstractAjaxTimerBehavior

AbstractSelfUpdatingTimerBehavior

AjaxEventBehavior

AjaxFormSubmitBehavior

AjaxFormComponentUpdatingBehavior AjaxFormValidatingBehavior

Figure 10.4 Ajax behaviors that work with the default engine

247Header contributions
 DateFormat.FULL, DateFormat.FULL);
 df.setTimeZone(tz);
 }

 @Override
 public Object getObject() {
 return df.format(new Date());
 }
 }

 public Clock(MarkupContainer parent, final String id, TimeZone tz) {
 super(parent, id, new ClockModel(tz));
 }
}

As you can see, all you have to do to let a component redisplay itself in a set interval is
add the Ajax behavior to it:

clock.add(new AjaxSelfUpdatingTimerBehavior(Duration.seconds(5)));

Ajax behaviors are a great way to enrich components with additional behavior without
impacting their normal behavior.

 The Ajax engine is an important aspect of Ajax. As we stated earlier, the Ajax
engine is a JavaScript library that runs in the client and takes care of issuing and han-
dling partial, asynchronous requests. It needs to be included in the page—preferably
just once, so the instance can be shared among the components that may use its func-
tionality. Wicket has a header contributions mechanism that lets individual components
include text and references in the header part of pages.

10.2 Header contributions
Contributing to the header section of pages is crucial for many components. This abil-
ity of individual components and behaviors to contribute to the page’s header is
called a header contribution. The HTML head section of a page, contained in <head>
tags, is typically where JavaScript and CSS dependencies are declared. Such dependen-
cies are then loaded before the page is rendered, so they can be used for rendering
the body of the page.

 For example, consider a Wicket page with a Tree component embedded, like the
nested example in wicket-examples. The head section in the source of that page
looks like this:

<head>
 <title>Wicket Examples - nested</title>
 <link href="../style.css" rel="stylesheet" type="text/css"/>
 <script type="text/javascript"
 src="resources/{package}.AbstractTree/res/tree.js"></script>
 <link rel="stylesheet" type="text/css"
 href="resources/{package}.DefaultAbstractTree/res/tree.css" />
</head>

Normal inclusion of
CSS stylesheet

Inclusion by component

248 CHAPTER 10 Rich components and Ajax
The reference to style.css is common and refers to style.css in the web application direc-
tory. The next two references—one for JavaScript and one for CSS—are contributed by the
Tree component (note that {package} is an abbreviation to make this example readable).

 The page the tree is placed in doesn’t need to know anything about the compo-
nent’s JavaScript and CSS dependencies; the header-contribution system that Wicket
provides takes care of inserting them in the right place. This mechanism also takes
care of filtering duplicate contributions, so that no matter how many trees you place
on that page, those two lines are the only ones inserted in the Page’s head section for
the Tree component. This allows for components that encapsulate their dependency
on some complex JavaScript and CSS files.

 You can make header contributions happen in several ways. We’ll discuss them in
the next few sections.

10.2.1 Using header-contributing behaviors
If we look at the Tree component, this is how the JavaScript part is contributed
in AbstractTree:

add(HeaderContributor.forJavaScript(
 AbstractTree.class, "res/tree.js"));

A factory method of the utility class HeaderContributor is called that returns a behav-
ior that takes care of contributing when the component it’s attached to is rendered.
This method returns a behavior that writes out a <script> tag and replaces the src
attribute with the URL to the tree.js file, relative to the package that AbstractTree
resides in (in the res subdirectory).

 In a similar fashion, you can add CSS:

add(HeaderContributor.forCss(MyComponent.class, "some.css"));

This writes out a <link> tag, where the href attribute is replaced with the URL to
some.css in the package where MyComponent.class resides.

 You can also use the header-contributor utility class to contribute files that don’t
reside in packages. For instance,

add(HeaderContributor.forCss("css/sysadmin.css"));

refers to sysadmin.css in the web application’s css directory. If you don’t provide a
scope argument (like AbstractTree.class), references are resolved relative to the
web application context path.

 Internally, HeaderContributor uses StringHeaderContributor, which contributes
the model object you provide to it as a plain string to the head section. A useful sub-
class of StringHeaderContributor is TextTemplateHeaderContributor. This behav-
ior lets you contribute with variable interpolation built in. This is useful when you have
something to contribute that is at least partially dynamic, but you don’t want to main-
tain it as a concatenated Java string (because that is harder to maintain, for example).

 You can find an example of how to use this in the Wicket Stuff project wicket-
contrib-yui, which focuses on creating Wicket adaptor components for the YUI

249Header contributions
widgets. Let’s look at part of the Slider component in that project. For every compo-
nent instance, you need to do some JavaScript initialization. The JavaScript is dynami-
cally generated based on properties of the component. Here, we could use a
StringBuilder to generate the necessary JavaScript, but doing so would result in code
that’s hard to read and maintain. Instead, we use a text template header contributor,
as shown in the next code fragment:

IModel variablesModel = new AbstractReadOnlyModel() {

 public Map getObject() {
 Map<String, CharSequence> variables =
 new HashMap<String, CharSequence>(7);
 variables.put("javaScriptId", javaScriptId);
 variables.put("backGroundElementId", backgroundElementId);
 variables.put("imageElementId", imageElementId);
 variables.put("leftUp", settings.getLeftUp());
 variables.put("rightDown", settings.getRightDown());
 variables.put("tick", settings.getTick());
 variables.put("formElementId", element.getId());
 return variables;
 }
};

add(TextTemplateHeaderContributor.forJavaScript(
 Slider.class, "init.js", variablesModel));

This code first creates a model that returns a map with the variables we want to expose
for substitution. Then, it adds the contribution using a static factory method that is
useful for JavaScript; when rendered, the method interpolates any variables in the
provided model with init.js from the package that contains Slider.

 The JavaScript file looks like this:

var ${javaScriptId};
function init${javaScriptId}() {
 ${javaScriptId} = YAHOO.widget.Slider.getHorizSlider(
 "${backGroundElementId}", "${imageElementId}", ${leftUp},
 ${rightDown}, ${tick});
 ${javaScriptId}.onChange = function(offsetFromStart) {
 document.getElementById("${formElementId}").value=offsetFromStart;
 }
}

In the next section, we’ll see what makes these behaviors contribute to the header.

10.2.2 Using the header contributor interface

In the previous section, the IHeaderContributor interface enables the header-
contributing behaviors. This interface can be implemented by both components and
behaviors, in which case the interface method renderHead is automatically called
when the page is rendered.

 The renderHead method is called with an instance of IHeaderResponse (org.
wicket.markup.html package). This interface has a renderString method, which is

Create model for
interpolation

Model returns
map

Add header contributor
with variables model

250 CHAPTER 10 Rich components and Ajax
used to directly write a string to the header. It also has convenience methods for writ-
ing JavaScript and CSS.

 You can find the getResponse method in IHeaderResponse. You can view it as a
breakout method for rare cases in which you need to render directly to the response
instead of via the other methods.

 The IHeaderContributor interface is implemented by AbstractAjaxBehavior;
when you write your own Ajax behaviors, you can override renderHead directly if you
need to contribute to the head section. For instance, this fragment of an Ajax behav-
ior does that:

public abstract class AbstractAutoCompleteBehavior
 extends AbstractDefaultAjaxBehavior {

 public void renderHead(IHeaderResponse response) {
 super.renderHead(response);
 response.renderJavascriptReference(new
 CompressedResourceReference(AutoCompleteBehavior.class,
 "wicket-autocomplete.js"));
 }
...

One more method for contributing to the page header is available to Wicket users, as
we’ll discuss in the next section.

10.2.3 Using the wicket:head tag

Doing header contributions as described in the previous sections works well for most
cases. But an alternative is available that lets you define header contributions as part
of the markup: <wicket:head> tags. In some cases, this markup is easier to read—for
example, when the contribution consists of multiple lines of static text. You can use
these tags for panels, borders, and pages that work with <wicket:extend>.

 For example, consider this example, which is a panel:

<wicket:head>
 <style type="text/css">
 .myClass {
 float : left;
 width : 50px;
 text-align : right;
 padding-right : 10px;
 }
</wicket:head>
<wicket:panel>
 <div class=”myClass”>
 This is my div.
 </div>
</wicket:panel>

In addition to the <wicket:panel> tags required for a panel definition, this example
includes <wicket:head> tags b. Between those tags, we place a CSS definition; that
definition (myClass) is used in the panel section c.

Head section to
be contributed

b

Normal panel
section

c

251Ajaxifying the cheese discounts
 You can also use Wicket components as you would regularly. Add them to the
panel in the right hierarchy, and Wicket will find them.

 Auto-links also work well in head sections. For instance, we can rewrite this

add(HeaderContributor.forCss(MyComponent.class, "some.css"));

as follows:

<wicket:head>
 <wicket:link>
 <link href="some.css" rel="stylesheet" type="text/css" />
 </wicket:link>
</wicket:head>

This example assumes MyComponent is a panel and this is the associated markup.
 As you’ve seen, you can perform header contributions three ways: using one of the

special header-contribution behaviors, by implementing IHeaderContributor directly
with your components or behaviors, and using <wicket:head> tags.

 Now that we’ve covered the basics, let’s write some Ajax code.

10.3 Ajaxifying the cheese discounts
In this section, we’ll refactor the discounts example to use Ajax. We won’t develop any
new Ajax behaviors and components; rather, we’ll reuse the ones that ship with
Wicket. The purpose of this section is to give you an idea not only how to implement
some basic Ajax functionality with existing components, but also how using Ajax can
result in a UI that works differently compared to a traditional web interface. The next
section shows what the end result will look like.

10.3.1 Implementing in-place editing

The big change for the discount-list component is that instead of having separate
modes for viewing and updating records, the component will have in-place editing.
We won’t provide a link for switching between editing and displaying; instead, users
can directly click the value they want to update.

 For the sake of simplicity, we’ll only make the percentage editable. Let’s look at
what we’ll be building. Figure 10.5 should look familiar: it’s the list without the [edit]/
[display] link.

When a user clicks one of the percentages, the text changes to a text field, as shown in
figure 10.6.

Figure 10.5

The discount list

Figure 10.6

Editing the discount

252 CHAPTER 10 Rich components and Ajax
When you leave the field or press Enter, an Ajax round-trip immediately updates the
discount. After the discount is updated, the label is shown again instead of an editor.

 If the provided value isn’t correct for the field, an error message appears and the
discount isn’t updated. The field stays open (in edit mode) as long as no valid value is
provided. You can see this in figure 10.7.

This is a different UI than the one we had before we used Ajax (although different
isn’t always better). An Ajax UI can be more intuitive, because it requires fewer user
actions to achieve the same result. In addition, users don’t have to look for a link to
switch to editing mode but instead can click the values they want to change. The previ-
ous UI is better suited for bulk editing and may be less confusing because the differ-
ence between displaying and editing is more explicit.

 Now that you know what the end result will look like, it’s time to discuss how we’ll
implement this new user interface.

10.3.2 Refactoring the discount list

With the new approach, we don’t need separate panels for editing and viewing the dis-
counts. We’ll take the DiscountsList component (which was used to view discounts in
chapter 8) and replace the Label component for the discount percentage with a special
component that supports in-place editing. We also need a feedback panel, so we’ll add
that to the component as well. Listing 10.3 shows the new version of DiscountsList.

public final class DiscountsPanel extends Panel {
 public DiscountsPanel(String id) {
 super(id);
 final FeedbackPanel feedbackPanel = new FeedbackPanel("feedback");
 add(feedbackPanel);
 add(new RefreshingView("discounts") {
 @Override
 protected Iterator getItemModels() {
 return new ModelIteratorAdapter(DataBase.getInstance()
 .listDiscounts().iterator()) {
 @Override
 protected IModel model(Object object) {
 return new CompoundPropertyModel((Discount) object);
 }
 };
 }

 @Override
 protected void populateItem(Item item) {
 item.add(new Label("cheese.name"));

Listing 10.3 Discounts panel with a feedback panel and editable label

Figure 10.7

Invalid value for the discount

253Ajaxifying the cheese discounts
 item.add(new EditablePercentageLabel("discount",
 feedbackPanel));
 item.add(new Label("description"));
 item.add(new DateFmtLabel("until"));
 }
 });
 }
}

The interesting part is the editable label. You can see the code for that component in
listing 10.4.

public class EditablePercentageLabel extends AjaxEditableLabel {
 private FeedbackPanel feedbackPanel;

 public EditablePercentageLabel(String id, FeedbackPanel feedbackPanel) {
 super(id);
 feedbackPanel.setOutputMarkupId(true);
 this.feedbackPanel = feedbackPanel;
 }

 @Override
 public IConverter getConverter(Class type) {
 return new PercentageConverter();
 }

 @Override
 protected void onError(AjaxRequestTarget target) {
 super.onError(target);
 target.addComponent(feedbackPanel);
 }

 @Override
 protected void onSubmit(AjaxRequestTarget target) {
 super.onSubmit(target);
 target.addComponent(feedbackPanel);
 Discount discount = (Discount) getParent().getModelObject();
 DataBase.getInstance().update(discount);
 }
}

Here is where things start to get interesting. We’ll skip getConverterMethod for
now—we’ll look at converters in chapter 13—and focus on the Ajax part.

 It’s important to note that we pass in the feedback panel in the constructor and
that we ask Wicket to re-render it using AjaxRequestTarget’s addComponent method
whenever an error happens (in the onError callback method).

 You never have to tell which components should be rendered if you aren’t using
Ajax; but if you use Wicket’s default Ajax implementation, you have to do so. Using
Ajax, you typically want only a few areas of the page to be updated, so it wouldn’t make
sense to render the whole page. And because Wicket can’t guess what needs to be
updated, you’ll have to tell Wicket explicitly.

Listing 10.4 Editable label

Editable
label

FeedbackPanel for reporting errors

Let Wicket
set identifier

Called when
validation fails

Called when
component is

successfully updated

254 CHAPTER 10 Rich components and Ajax
 The good news is that when you tell Wicket what needs to be updated, it takes
care of the rest, including all the hard work of updating relevant areas of the client’s
browser. In order for Wicket to update those areas, you need to instruct Wicket to
output the components’ DOM identifiers. You do so by calling setOutputMarkupId
with true for the components you want to update using Ajax. You don’t need to do
this on any children of these components: just the top-level component you want to
re-render.

 To understand better how Wicket works with Ajax, let’s look at the implementation
of AjaxEditableLabel in the next section.

10.3.3 How AjaxEditableLabel works

The source of AjaxEditableLabel is large, because it’s a component that’s meant to
be used in many different contexts. A lot of that code handles corner cases and exten-
sibility. You’re interested in learning how the component works without all the extra
code, so let’s look at a few fragments of its code.

 The AjaxEditableLabel is a Panel that has two different modes: one for display-
ing and one for editing. This is similar to how the non-Ajax version of the discounts
list is set up. It has two nested components: a form component (called editor) for
editing, and a component (called label) for displaying. At any given time, only one of
the two is visible.

 Let’s examine these nested components separately.
THE NESTED LABEL COMPONENT

The parent component constructs the embedded display component by calling the
newLabel method. The default implementation of this method is shown in listing 10.5.

protected Component newLabel(MarkupContainer parent,
 String componentId, IModel model) {

 Label label = new Label(componentId, model) {

 @Override
 public IConverter getConverter(Class type) {
 IConverter c = AjaxEditableLabel.this.getConverter(type);
 return c != null ? c : super.getConverter(type);
 }

 @Override
 protected void onComponentTagBody(MarkupStream markupStream,
 ComponentTag openTag) {
 Object modelObject = getModelObject();
 if (modelObject == null || "".equals(modelObject)) {
 replaceComponentTagBody(markupStream, openTag,
 defaultNullLabel());
 } else {
 super.onComponentTagBody(markupStream, openTag);
 }

Listing 10.5 Label component of the Ajax editable label

Pass through
parent’s
converter

Display when
model is null

255Ajaxifying the cheese discounts
 }
 };
 label.setOutputMarkupId(true);
 label.add(new LabelAjaxBehavior("onclick"));
 return label;
}

The key thing in this code is the adding of an Ajax behavior; it attaches an onclick
event handler to the label, which when triggered results in a callback to the behavior.

 Listing 10.6 shows the implementation of LabelAjaxBehavior.

protected class LabelAjaxBehavior extends AjaxEventBehavior {

 public LabelAjaxBehavior(String event) {
 super(event);
 }

 @Override
 protected void onEvent(AjaxRequestTarget target) {
 onEdit(target);
 }
}

This behavior extends AjaxEventBehavior, which builds on AbstractDefaultAjax-
Behavior, so it uses Wicket’s default Ajax engine. AjaxEventBehavior attaches to a
JavaScript event handler (onclick in this example, as you can see in listing 10.5) and
triggers a callback when the JavaScript event handler is executed. The label in the
example is defined in the markup like this

[[label]]%

which is expanded to

 <span onclick="var wcall=wicketAjaxGet(...) != null;}.bind(this));"
id="label11">15%

when it’s rendered. The wicketAjaxGet function is defined in the wicket-ajax.js Java-
Script file, which contains most of Wicket’s default Ajax implementation. You’ll rarely,
if ever, need to access JavaScript functions from wicket-ajax.js directly because Java-
Script is abstracted away in the basic Ajax behaviors Wicket provides.

 The LabelAjaxBehavior calls the onEdit method of the parent class when the
event is executed. You’ll recognize this as a common pattern used by components that
nest other components as part of their functionality. When designing the behavior, we
wanted users of the behavior to be able to override what happens when the label is
clicked. The default implementation is sufficient for most cases, but you never know
in what ways users will extend your component. By deferring the real work to an over-
ridable method on the parent class, we keep the label an implementation detail but
provide users with an easy way to customize the functionality by applying the template
method design pattern.

 The implementation of the onEdit method is shown in listing 10.7.

Listing 10.6 Label component of the Ajax editable label

Print DOM
identifier Add

AjaxBehavior

onEdit defined
in parent class

256 CHAPTER 10 Rich components and Ajax
protected void onEdit(AjaxRequestTarget target) {
 label.setVisible(false);
 editor.setVisible(true);
 target.addComponent(AjaxEditableLabel.this);
 target.appendJavascript("{ var el=wicketGet('"
 + editor.getMarkupId() + "');"
 + " if (el.createTextRange) { "
 + " var v = el.value; var r = el.createTextRange(); "
 + " r.moveStart('character', v.length); r.select(); } }");
 target.focusComponent(editor);
}

We set the label to invisible and the editor to visible. The parent component,
AjaxEditableLabel, is added to the request target for re-rendering, which results in
the label and editor also being rendered (because they’re visible children of the com-
ponent). The JavaScript that is sent as part of the Ajax response (using the append-
Javascript method of AjaxRequestTarget) is executed on the client and selects the
text of the text field. The call to focusComponent finally asks the client to put the focus
on the text field.

 That’s the display part. Now, let’s look at how to implement the editing part.
THE NESTED TEXT FIELD COMPONENT

The parent component constructs the embedded edit component by calling the new-
Editor method; the default implementation appears in listing 10.8.

protected FormComponent newEditor(MarkupContainer parent,
 String componentId, IModel model) {

 TextField editor = new TextField(componentId, model) {

 @Override
 public IConverter getConverter(Class type) {
 IConverter c = AjaxEditableLabel.this.getConverter(type);
 return c != null ? c : super.getConverter(type);
 }
 };
 editor.setOutputMarkupId(true);
 editor.setVisible(false);
 editor.add(new EditorAjaxBehavior());
 return editor;
}

No surprises here. As with the label, the interesting part is found in the Ajax behavior.
Let’s look at EditorAjaxBehavior, shown in listing 10.9.

protected class EditorAjaxBehavior extends
 AbstractDefaultAjaxBehavior {

 @Override

Listing 10.7 Event-handling code for when the edit label is clicked

Listing 10.8 Text field component of the Ajax editable label

Listing 10.9 Event-handling code for the editor text field

Output DOM
identifier Start

invisible

Add
AjaxBehavior

257Ajaxifying the cheese discounts
 protected void onComponentTag(ComponentTag tag) {
 super.onComponentTag(tag);

 String saveCall = "{"
 + generateCallbackScript("wicketAjaxGet('"
 + getCallbackUrl()
 + "&save=true&'+this.name+'='+wicketEncode(this.value)")
 + "; return false;}";

 String cancelCall = "{"
 + generateCallbackScript("wicketAjaxGet('"
 + getCallbackUrl() + "&save=false'")
 + "; return false;}";

 String keypress = "var kc=wicketKeyCode(event); if (kc==27) "
 + cancelCall
 + " else if (kc!=13) { return true; } else "
 + saveCall;

 tag.put("onblur", saveCall);
 tag.put("onkeypress", keypress);
 }

 @Override
 protected void respond(AjaxRequestTarget target) {
 RequestCycle requestCycle = RequestCycle.get();
 boolean save = Boolean.valueOf(
 requestCycle.getRequest().getParameter("save"))
 .booleanValue();

 if (save) {
 editor.processInput();

 if (editor.isValid()) {
 onSubmit(target);
 } else {
 onError(target);
 }
 } else {
 onCancel(target);
 }
 }
}

The EditorAjaxBehavior’s onComponentTag method attaches JavaScript event han-
dlers to the text-field tag. It triggers a save on the onBlur event (which is triggered
when the text field loses focus) and when the user presses the Enter key. When the
user presses the Esc key, cancel is triggered.

 save and cancel are Ajax calls back to the behavior, which handles them through
the respond method. The calls pass a save request parameter to communicate the
action that should be performed (save or cancel). The save call also sends the current
value of the text field with the request. That’s what this does in listing 10.9:

 this.name+'='+wicketEncode(this.value)"

The call

 editor.processInput();

Triggered when
leaving field

Triggered when
key is pressed

&'+this.name+'='
provides value

Add validation
result

258 CHAPTER 10 Rich components and Ajax
lets the component pick up that value and use it to try to update its model value.
When that is done, we check whether validation succeeded using the following:

 if (editor.isValid()) { ...

The appropriate method onSubmit or onError is then called. Those two methods
were implemented in listing 10.4.

 In the first section of this chapter, we looked at what Ajax is. After that, we dis-
cussed header contributions—a crucial construct to enable transparently reusable
Ajax components. In this section, we examined the implementation of an Ajax com-
ponent. The next section will explore some dos and don’ts when you’re creating cus-
tom Ajax components.

10.4 Creating your own Ajax components
The typical pattern for creating custom Ajax components starts with Ajax behaviors.
You can either reuse an existing behavior or create one yourself, or even combine a
few. Then, you create a component that uses such an Ajax behavior. That compo-
nent typically hides the behavior and, for instance, adds the behavior to itself in
its constructor.

 You don’t have to use behaviors to implement Ajax components—you can ulti-
mately code everything in, for example, onComponentTag and friends—but doing so
offers some advantages:

■ Ajax behaviors hide the details of Ajax processing well and provide a good way
to hook into things like header contributions.

■ The range of available Ajax behaviors covers most common use cases so you
don’t have to implement those behaviors yourself.

■ Behaviors can easily be combined and reused in other contexts (that is, other
components).

Let Ajax behaviors be the starting point for creating Ajax components. The choice to
make is whether to use Wicket’s built-in Ajax engine or a third-party Ajax engine, such
as Dojo or Scriptaculous.

10.4.1 Using third-party Ajax engines

If you want to use a third-party Ajax engine, you typically start by creating an abstract
base class for that engine. That base class should extend AbstractAjaxBehavior. It’s
possible to go lower than that class by implementing the IBehavior, IBehavior-
Listener, and IHeaderContributor interfaces, but that’s not recommended because
you’ll have to implement everything yourself instead of only the interesting bits.

 The minimal thing the base class then does is ensure that the proper JavaScript is
contributed when the host component is rendered. You also want to be sure the com-
mon JavaScript is contributed only once for all behaviors that use the same engine,
and you want to encapsulate these contributions so clients don’t have to know any-
thing about them. The behavior in listing 10.10 performs the contributions in the

259Creating your own Ajax components
renderHead method, which is declared final so it’s guaranteed to be called. Users can
override onRenderHead if they wish.

public abstract class AbstractScriptaculousBehavior extends
 AbstractAjaxBehavior {

 @Override
 public final void renderHead(IHeaderResponse response) {
 response.renderJavascriptReference(new ResourceReference(
 ScriptaculousAjaxHandler.class, "prototype.js"));
 response.renderJavascriptReference(new ResourceReference(
 ScriptaculousAjaxHandler.class, "scriptaculous.js"));
 response.renderJavascriptReference(new ResourceReference(
 ScriptaculousAjaxHandler.class, "behavior.js"));
 onRenderHead(response);
 }

 protected void onRenderHead(IHeaderResponse response) {
 }
}

This could be the base class for Ajax
behaviors that use Scriptaculous as
their Ajax engine. We use relative pack-
age resource references, so the Java-
Script files can be found relative to the
class in the same package. This is illus-
trated in figure 10.8.

 The AbstractScriptaculousBehav-
ior class overrides renderHead to con-
tribute prototype.js, scriptaculous.js, and
behavior.js. Note that in addition to
overriding that method, Abstract-

ScriptaculousBehavior also declares
it as final and defines another method, onRenderHead, which is called at the end of
renderHead. This is a common trick to provide customizability while ensuring our own
functionality remains in place. We ensure that subclasses can’t override our method
(renderHead), and provide a customization hook (onRenderHead) that subclasses can
override to provide their own code.

 The package includes more JavaScript files than are contributed, because the core
JavaScript file scriptaculous.js includes the other files. These kinds of inclusions are com-
mon with larger JavaScript projects, and they typically involve dependent files that can be
found relative to the main files. Fortunately, this isn’t a problem for Wicket; scriptacu-
lous.js can load its dependencies, such as builder.js and effects.js, without a problem.

 Another nice feature of performing header contributions with package resources
is that you don’t have to do anything extra to filter double contributions: Wicket takes

Listing 10.10 Abstract behavior that contributes JavaScript dependencies

Figure 10.8 Example package for Scriptaculous
Ajax behavior

260 CHAPTER 10 Rich components and Ajax
care of that automatically. If for some reason you’re unable to use package resources,
you have to do a little more work. This is how such filtering would look if you were to
do filtered header contributions yourself:

public class SomeHeaderContributor extends AbstractBehavior implements
 IHeaderContributor {
 private static final String id = "foo";

 public void renderHead(IHeaderResponse response) {
 if (!response.wasRendered(id)) {
 response.renderString("<!-- very meaningful contribution -->");
 response.markRendered(id);
 }
 }
}

In the renderHead method, we check whether our header contributor has been ren-
dered already by checking for our identifier "foo". This identifier should be fairly
unique. A typical good value would be the name of the library you’re integrating or
your behavior’s class name.

 The last thing left to implement in our custom behavior is the Ajax callback
method: IBehaviorListener’s onRequest method. That method should typically set a
request target specific for handling the request.

 Suppose we want to be lazy and implement something that forces the subclasses to
provide an answer as a plain string. The Scriptaculous base class then looks like this:

public abstract class AbstractScriptaculousBehavior extends
 AbstractAjaxBehavior {

 public void onRequest() {
 RequestCycle.get().setRequestTarget(
 new StringRequestTarget(getAnswer()));
 }

 @Override
 public final void renderHead(IHeaderResponse response) {
 response.renderJavascriptReference(new ResourceReference(
 AbstractScriptaculousBehavior.class, "prototype.js"));
 response.renderJavascriptReference(new ResourceReference(
 AbstractScriptaculousBehavior.class, "scriptaculous.js"));
 response.renderJavascriptReference(new ResourceReference(
 AbstractScriptaculousBehavior.class, "behavior.js"));
 onRenderHead(response);
 }

 protected abstract String getAnswer();

 protected void onRenderHead(IHeaderResponse response) {
 }
}

This version of AbstractScriptaculousBehavior has onRequest implemented; it uti-
lizes the simplest request target available with Wicket b. The StringRequestTarget
renders the passed-in string as is. In this case, the string is whatever a concrete subclass

Set simple
request target

b

Called when making
request target

c

261Creating your own Ajax components
returns with its getAnswer implementation c. That would be crude for a real-world
implementation, but it gives you an idea of how third-party Ajax support could be
built up.

 So far in this chapter, we’ve assumed that all users have JavaScript-enabled brows-
ers and have turned on JavaScript support. This may be a risky assumption; in some
cases, it’s good to find out more about the client so you can decide whether to take an
alternative approach. The next section shows how you can inspect clients’ capabilities
with Wicket.

10.4.2 Detecting client capabilities

Wicket has a built-in mechanism for detecting client capabilities. You can access this
information by putting the following statement in your code:

WebClientInfo clientInfo = WebRequestCycle.get().getClientInfo();

By default, the User-Agent header that is part of the request header is used to build
the WebClientInfo object. This is sufficient for simple cases, but it doesn’t guarantee
you much when, for instance, you want to assert whether a client supports JavaScript.

 Wicket ships with an enhanced client-detection mechanism that involves an inter-
mediate page that executes tests on the client itself before sending this information
back and redirecting to the original page. This should be fast enough so clients don’t
notice, but clients with slower connections may see a flash of the page. This is why it’s
turned off by default. If you want to turn it on, you have to configure the appropriate
setting in the request-cycle settings:

 getRequestCycleSettings().setGatherExtendedBrowserInfo(true);

Now, a bunch of extra properties are available to be read:

 WebClientInfo clientInfo = WebRequestCycle.get().getClientInfo();
 final ClientProperties properties = clientInfo.getProperties();
 TimeZone timeZone = properties.getTimeZone();
 properties.getBoolean(ClientProperties.NAVIGATOR_JAVA_ENABLED);
 properties.getInt(ClientProperties.SCREEN_HEIGHT, -1);
 properties.getInt(ClientProperties.SCREEN_WIDTH, -1);

NOTE If you configure Wicket to gather extended browser information, don’t
call getClientInfo in a model. If you do, and the client info isn’t read, a
redirect will be issued in the middle of rendering, which will be denied.
Alternatively, you can make sure the redirect is performed at an early
stage—for example, your front page.

The page that’s used to do the extended client polling is BrowserInfoPage in the
org.apache.wicket.markup.html.pages package. If you have an application that
requires users to log in before they can do anything else, it makes sense to put the
detecting code in the login form; you swat two flies at once, as the Dutch would say.

 If you want to work with your own generic mechanism, you can also provide a
custom request cycle and override the newClientInfo method. To do that, it may

262 CHAPTER 10 Rich components and Ajax
be worth taking a look at the implementation in WebRequestCycle and see what you
can reuse.

 The last option is to do something completely custom. For instance, you can make
the browser polling part of your login page and send the information back using hid-
den fields. Then, when processing the login, you can get the client properties and set
the appropriate fields.

 We’ll finish this chapter by listing common mistakes that people make when work-
ing with Wicket and Ajax.

10.5 Gotchas when working with Wicket and Ajax
When you work with Ajax, whether or not in combination with Wicket, you’re likely to
run into a couple of gotchas. Here’s how to avoid the most common ones:

■ Always let the components you want to re-render through Ajax print out their
DOM identifiers. You do this by calling setOutputMarkupId with true.

■ Communicate what you’re doing. Latency may feel to the user as if nothing is
going on. Consider using a busy indicator, and always communicate things like
validation errors. See WicketAjaxIndicatorAppender and IndicatingAjax-
Link for ideas on how to add busy indicators to your components.

■ Be careful with Ajax and tables, because you’re likely to run into browser issues
(specifically, in Internet Explorer) if you combine the two. We’ve found it works
best to repaint the entire table when working with Ajax rather than try to
replace sections of it. This isn’t the most efficient solution, but it seems to be
the most reliable.

■ Understand specific limitations of components such as ListView and Repeat-
ingView when you use them with Ajax. Wicket takes care of a lot of magic, but
sometimes a few rough edges are left. See the wiki on the Wicket website and
mailing list archives for discussions if you run into trouble.

As an example of a gotcha, look at what happens if we try to refresh a ListView
directly using Ajax. The following snippet shows the Java code and markup illustrating
our example:

ListView lv = new ListView("editors",
 Arrays.asList("Tiffany", "Mary", "Cynthia")) {
 @Override protected void populateItem(Item item) {
 item.add(new Label("name", item.getModelObjectAsString()));
 }
}
lv.setOutputMarkupId(true);
add(lv);

<!-- markup -->

<li wicket:id="editors">

263Gotchas when working with Wicket and Ajax
This example generates the following markup:

<li wicket:id="editors">Tiffany
<li wicket:id="editors">Mary
<li wicket:id="editors">Cynthia

As you can see, the ListView doesn’t produce any markup identifiers. This is because
we set the flag on the ListView component, not on the Item components. You’d
expect the ul tag to receive a markup identifier, but the ListView doesn’t even know
the ul tag exists. Remember that ListView is a component that repeats its markup
and uses the Item as the container that receives the markup. Calling setOutputMark-
upId on a ListView has no effect. This is one reason why refreshing a ListView
directly using Ajax doesn’t work. There are more technical issues, but going through
them all would be boring.

 The solution to this problem is easy: either let Wicket repaint a suitable parent (for
example, a panel or form that is a parent of the ListView) or create a parent for this
special purpose. We could rewrite our example as follows:

WebMarkupContainer wmc = new WebMarkupContainer("parent");
wmc.setOutputMarkupId(true);
ListView lv = new ListView("editors",
 Arrays.asList("Tiffany", "Mary", "Cynthia")) {
 @Override protected void populateItem(Item item) {
 item.add(new Label("name", item.getModelObjectAsString()));
 }
}
wmc.add(lv);

<!-- markup -->
<ul wicket:id="parent">
<li wicket:id="editors">

In this example, we first create a WebMarkupContainer that functions as a wrapper
around our ListView. Next, we tell the WebMarkupContainer to write out its markup
identifier. Finally, we add our ListView to the WebMarkupContainer. In the markup,
we attach the WebMarkupContainer to the ul tag. Using this improved example, we’re
now able to repaint the ListView by adding the WebMarkupContainer to an Ajax-
RequestTarget.

 To prevent mistakes like those demonstrated, keep in mind that you can’t add a
repeater directly to an AjaxRequestTarget with the current Wicket version—you’ll
get a runtime error if you try.

 Many good resources go into more detail about the issues you may run into when
using Ajax, such as http://ajaxpatterns.org and http://ajaxian.com. Keep track of
these sites when you use Ajax in your applications.

264 CHAPTER 10 Rich components and Ajax
10.6 Summary
We’ve spent the last few chapters discussing custom components from different angles.
Chapter 8 was about the basics of custom components, and this chapter examined com-
ponents that use techniques like DHTML and Ajax to create a richer user experience.

 We looked at what Ajax is, and we discussed Wicket’s enabling technology for Ajax
and other rich components header contributions. Wicket components and behaviors
can contribute JavaScript and CSS to the head section of the page they’re nested in.
This comes in handy when you’re designing self-contained components that depend
on JavaScript and CSS.

 The main topic of this chapter was Ajax. First, we discussed a couple of advantages
and disadvantages. Then, we revamped the cheese store’s discount list so you could
see the difference between an Ajax approach and a traditional one in terms of both
the UI and the code you end up with. We also took a peek at the internals of one of
Wicket’s built-in Ajax components to get an idea of how you can bridge the Java and
client JavaScript worlds. We ended by looking briefly at how to get started when you
want to develop Ajax components from scratch.

 In the next chapter, we’ll discuss how to build in security at a component level.

Part 4

Preparing for the real world

In the previous parts of this book, you learned how to use Wicket’s compo-
nents and make your own. Now you can start designing pages and custom com-
ponents, and finally ship your application. But an evil world lurks outside. How
can you make your application secure? Chapter 11 introduces Wicket’s security
features. You’ll learn how to apply authentication and authorization to secure
(parts of) your application.

 But the world is not only an evil place (at least, parts of it); billions of users
don’t speak your language. Wicket’s internationalization and localization sup-
port gives you the means to reach out to the world. Chapter 12 discusses how
you can prepare your application for an international crowd.

 When you build an application, chances are you’re using a dependency-
injection framework such as Spring or Guice. In chapter 13, you’ll learn how to
implement such a multitiered architecture with Spring as an example. When
you use Spring or Guice, you probably use an object-relational mapping frame-
work such as Hibernate, iBatis, Cayenne, or OpenJPA. Chapter 13 shows you how
to use Hibernate together with Wicket.

 Before you unleash your application on the unsuspecting world, you may
want to read chapter 14. This chapter discusses how you can test your Wicket
pages and components. You’ll learn how to create a search-engine-friendly URL
schema, how to configure your application for maximum performance, and how
to monitor your application once it’s in production.

Securing your
application
In the previous few chapters, we looked at custom components while we developed
the discount-list example. In this chapter, we’ll take that example and secure it.
The discount list has a function to edit discounts, which is currently available to all
users of the web application. We’ll change that so only specific users—administra-
tors—can edit this list.

 The first step in doing so is to ensure that users are who they say they are. This is
called authentication. The simplest and most common form of authentication
requires users to provide a username and password combination. This is what we’ll
develop in the first half of this chapter.

 In addition to authenticating users, we also need to authorize them. Because we
want only administrators to have access to the discount-editing functionality, nor-
mal users shouldn’t be aware of the functionality. We’ll discuss how to implement
that kind of protection in the second half of this chapter.

 We didn’t want to title this chapter ”Security,” because that would have increased its
scope considerably. But we’d like to say a few words about how Wicket is secure by default.

In this chapter:
■ Ensuring that only authenticated users can

edit a list
■ Accessing discount-editing functionality
267

268 CHAPTER 11 Securing your application
11.1 Session-relative pages
With Wicket, if you don’t code using bookmarkable pages, you use session-relative
pages—Wicket’s default way of coding web applications. Page instances are kept on the
server, and you ask Wicket (through your browser) for a certain page by providing the
page number, the version, and the component that is the target of the request. This
works contrary to the REST architectural pattern, which states that servers shouldn’t
keep state: clients provide servers with the relevant state when they issue requests. As
you saw in chapter 1, REST is great for scalability but lousy for the programming model.
Now, we get to another problem with REST: the pattern is inherently unsafe, whereas
Wicket’s server-state pattern is safe (although not watertight) by default.

 For instance, suppose you implement the functionality of removing an object
using a link like this:

final MyObject myObject = ...
add(new Link("remove") {
 @Override
 public void onClick() {
 myDao.remove(myObject);
 }
});

You never need to worry about pimple-faced 14-year-olds trying to hack your web
application. To do so, they would have to hijack the session and then guess the right
page identifiers and version numbers, which would be relative to the session and the
relevant component paths. You’d have to be a persistent hacker to pull that off. You
can make your Wicket application even more secure from the default by encrypting
requests with, for instance, CryptedUrlWebRequestCodingStrategy.

 The REST variant of building your application would use bookmarkable pages
like this:

public DeleteMyObjectPage(PageParameters p) {
 super(p);
 Long id = p.getLong("id");
 myDao.remove(MyObject.class, id);
}

This example, which is similar to how you’d use actions or commands with Model 2 frame-
works, is unsafe in two distinct ways. The URL of DeleteMyObjectPage can be guessed,
thus exposing that functionality to misuse. Even if users are authorized to access that
page, and allowing access itself isn’t a problem, they may need to be restricted so
that they can delete only certain instances of MyObject. Without explicit protection,
they can guess identifiers or write a script to delete parts of the database. That means
extra checks that need to be coded and potential security holes that may be overlooked;
the session-relative approach doesn’t require you to do anything extra in this respect.

 The ability to secure your application by using session-relative addressing is a big
advantage of Wicket over most of its competitors. But depending on session-relative
addressing doesn’t always cover everything you need. You may have good reasons to

269Implementing authentication
make functionality bookmarkable, and in that case you may need fine-grained control
over how your components are rendered, for instance. We’ll fill in these gaps here,
starting with authentication.

11.2 Implementing authentication
In this part of the chapter, we’ll build pages for signing in and signing out users, and
we’ll build a panel that shows users their authentication status (whether or not they’re
signed in).

 Users’ authentication status is something you should have readily available through-
out the period a user is active on the site. You’ll often need that information when
deciding whether a user can access a page, see a link, and so forth (performing autho-
rization). A good place to store authorization information is in the Wicket session
object, because it’s available throughout the user’s session. Let’s implement this in the
next section.

11.2.1 Keeping track of the user

To store information about users, we’ll create a User class. In it, we’ll store the user’s
full name, unique username, and password, and a field that says whether the user is an
administrator. A User object is created when a user successfully authenticates; the
object is stored in the Wicket session. To achieve that, we need to create a custom ses-
sion that keeps a reference to the currently logged-in user. If that reference is null, it
means that the current user didn’t authenticate (yet).

 Figure 11.1 shows a diagram of the session and user classes.

The Java code for the custom session class is shown in listing 11.1.

public class WiaSession extends WebSession {

 public static WiaSession get() {
 return (WiaSession) Session.get();
 }

 private User user;

 public WiaSession(Application application) {
 super(application);

Listing 11.1 Custom session class with a reference to the current user

(getters/setters)

fullname : String
wiaUsername : String
wiaPassword : String
admin : boolean

User

getUser : User
setUser(User)

user: User
WiaSession

WebSession

Figure 11.1

The user and session classes

Use
covariance

b

270 CHAPTER 11 Securing your application
 }

 public boolean isAuthenticated() {
 return (user != null);
 }
 ..(getUser/setUser)
}

The WiaSession class b extends WebSession and uses Java’s covariance feature (Java 5
and up) so that clients don’t have to cast the session but instead do this:

WiaSession s = WiaSession.get();

Having the isAuthenticated method c isn’t strictly necessary either, because clients
could call getUser and check on null; but providing this separate method is a good
way to hide this implementation detail of how null is interpreted.

 You can instruct Wicket to use custom sessions by overriding the newSession
method in your application class:

@Override
public Session newSession(Request request, Response response) {
 return new WiaSession(request);
}

Wicket creates sessions for users automatically.
 Now that we’ve built the facilities for keeping the authentication information, we

can build the authentication functionality.

11.2.2 Authenticating the user

Authentication is done many ways. These approaches are generally classified in three
categories: something users have (a chip card), users’ biometrics (fingerprints), and
something users know (username/password). To keep things simple, we’ll implement
authentication based on a username/password that users enter on a sign-in page.

 The sign-in page should provide the functionality to process a login attempt. It
should know how to validate the input the user provides; and if the attempt is success-
ful, it should save the relevant information in the session and redirect the user to
where she wanted to go in the first place.

 When we’re done, the sign-in page will look like the one in figure 11.2.

Let’s implement this as a regular page with the form implemented as a private class. A
partial implementation is displayed in listing 11.2.

public class SigninPage extends WebPage {

 private static class SignInForm extends StatelessForm {

 private String wiaPassword;

Listing 11.2 The sign-in page

Utility
method

c

Figure 11.2

The sign-in page

Stateless
formb

271Implementing authentication
 private String wiaUsername;

 public SignInForm(String id) {
 super(id);
 setModel(new CompoundPropertyModel(this));
 add(new TextField("wiaUsername"));
 add(new PasswordTextField("wiaPassword"));
 }
 }
 ...
}

This is a form like those you’ve seen many times. But two things may have caught
your attention.

 First, rather than a regular text field, we use a password text field c. This compo-
nent attaches to an HTML input tag of type password, and it clears the input every
time it renders so it won’t be sent back to the client if authentication fails.

 Second, the form extends StatelessForm b. It’s possible (although probably
rare) for a user to go to the login screen, decide to do something else for an hour,
then try to log in using that page of the now-expired session, and be confronted with a
session-expired message. We avoid that situation by making the login form (and page)
stateful so the login functionality is bookmarkable.

 What happens when the form is submitted? In the onSubmit method, we check
whether the user is authenticated; if so, we redirect to the originally requested URL, if
applicable (more on that later in this chapter). The implementation is shown in list-
ing 11.3.

@Override
public final void onSubmit() {
 if (signIn(wiaUsername, wiaPassword)) {
 if (!continueToOriginalDestination()) {
 setResponsePage(getApplication().getHomePage());
 }
 } else {
 error("Unknown username/ password");
 }
}

private boolean signIn(String username, String password) {
 if (username != null && password != null) {
 User user = DataBase.getInstance().findUser(username);
 if (user != null) {
 if (user.getWiaPassword().equals(password)) {
 WiaSession.get().setUser(user);
 return true;
 }
 }
 }
 return false;
}

Listing 11.3 Logging in users

Special password
component

c

272 CHAPTER 11 Securing your application
The signIn method checks the database for the provided username and password
and saves the user in the session if the check succeeds. If it does, the method
continueToOriginalDestination is called on the component (it doesn’t matter on
which component, because it ultimately passes the call to the current page map).
That method finds out whether an interception URL was set prior to this call; if so,
the method sets a special request target that initiates a redirect to the original URL.
The method returns true if an interception URL was set. If no such URL was set, we
don’t want to keep displaying the login page; instead, we redirect to the application’s
home page.

 And with this, users can now log in. To make the example more realistic, we should
show users an indication that they’re logged in. In the next section, we’ll develop a
user panel for this purpose.

11.2.3 Building a user panel

The user panel displays the message “Signed in as (user)” followed by a link the user
can click to sign out. This functionality is implemented in listing 11.4.

public class UserPanel extends Panel {

 public UserPanel(String id, Class<? extends Page> logoutPageClass) {

 super(id);
 add(new Label("fullname", new PropertyModel(this,
 "session.user.fullname")));
 PageParameters parameters = new PageParameters();
 parameters.add(SignOutPage.REDIRECTPAGE_PARAM, logoutPageClass
 .getName());
 add(new BookmarkablePageLink("signout", SignOutPage.class,
 parameters) {
 @Override
 public boolean isVisible() {
 return WiaSession.get().isAuthenticated();
 }
 });
 add(new Link("signin") {

 @Override
 public void onClick() {
 throw new RestartResponseAtInterceptPageException(
 SigninPage.class);
 }

 @Override
 public boolean isVisible() {
 return !WiaSession.get().isAuthenticated();
 }
 });
 }
}

Listing 11.4 Panel that displays the logged-in user and a sign-out link

273Implementing authentication
This is the HTML that goes with it (UserPanel.html):

<wicket:panel>
 <wicket:enclosure child="signout">
 Signed in as <i>[name]</i>
 <a wicket:id="signout">sign out
 </wicket:enclosure>
 <a wicket:id="signin">sign in
</wicket:panel>

In the UserPanel, we created a model that extends LoadableDetachableModel for rep-
resenting the current user (if any). Next, we instantiate a property model that works on
that user model, with the property expression fullname. Property models are smart
enough not to crash when target objects (the objects the expression is supposed to work
on) are null. If there is no user in the session—in which case the model’s load method
would return null—nameModel returns null, and the label renders blank.

 The isVisible overrides ensure that either the sign-in link is displayed when the
user isn’t signed in yet, or the sign-out link is displayed when the user is signed in. We
also use a <wicket:enclosure> tag to couple the section that displays some static text
and the username to the visibility of the sign-out link, so that the whole section is dis-
played only when a user is signed in.

NOTE You may wonder why we call the sign-out link with a parameter. The only
reason is that redirecting to a specified sign-out page is such a basic facil-
ity, you probably won’t want to implement it over and over again as we’d
have to do if we hard-coded the location to redirect to. Alternatively, you
could redirect to the application’s home page.

In the next section, we’ll create the sign-out page.

11.2.4 Building a page for signing out

The sign-out page is implemented in a generic fashion, so we can reuse it in multiple
applications. The code of the sign-out page is shown in listing 11.5.

public class SignOutPage extends WebPage {

 public static final String REDIRECTPAGE_PARAM = "redirectpage";

 @SuppressWarnings("unchecked")
 public SignOutPage(final PageParameters parameters) {
 String page = parameters.getString(REDIRECTPAGE_PARAM);
 Class<? extends Page> pageClass;
 if (page != null) {
 try {
 pageClass = (Class<? extends Page>) Class.forName(page);
 } catch (ClassNotFoundException e) {
 throw new RuntimeException(e);
 }
 } else {

Listing 11.5 Generic sign-out page

274 CHAPTER 11 Securing your application
 pageClass = getApplication().getHomePage();
 }
 getSession().invalidate();
 setResponsePage(pageClass);
 }
}

The only thing this page does is terminate the session and redirect to a given page. We
don’t need anything special for markup. This is enough:

<html></html>

The interesting part in the sign-out page is the call to invalidate the session. Whenever
you want to invalidate the session, you have two methods at your disposal: Ses-
sion.invalidate and Session.invalidateNow. Typically, you should use the first
variant, which sets a flag that’s processed at the end of the request but allows the
request in progress to keep accessing the session without problems. The advantage of
this approach is that everything renders as usual, giving any components the chance
to clean up properly, and so on. We can’t think of a good reason to call invalidate-
Now, unless you have, for instance, a special security constraint you want to enforce.

NOTE Always set a bookmarkable response page after you invalidate the session.
If we passed a page instance in the sign-off page, it wouldn’t be available
on the next request because the session it was recorded in would no
longer be available.

This concludes the first part of the chapter on authentication. We built a simple user
class and a custom Wicket session to hold a reference to the user, we built sign-in and
sign-out forms, and we built a panel that displays the user’s authentication status.

 Now that we can authenticate users, we can implement authorization.

11.3 Implementing authorization
For our example, just authenticating users isn’t enough. We also want to determine
whether users may edit discounts. Checking whether a user is allowed to do or see
something is what we refer to as authorization.

 In this part of the chapter, we’ll change the discount’s functionality so that it’s only
available to authenticated users. We’ll also make sure only admin users can edit discounts;
normal users won’t even see the Edit link, let alone be able to access the functionality.

 There are multiple ways to protect your pages from unwanted access. A simple
approach, for instance, is to let your pages extend a base page that checks authorization
in its constructor. It can throw an exception or issue a redirect if authorization fails.

 But using inheritance to take care of such things limits flexibility. It’s often better
to implement authorization as a cross-cutting concern. Wicket has a mechanism for
doing that: authorization strategies.

11.3.1 Introducing authorization strategies

The IAuthorizationStrategy interface is especially designed for securing web appli-
cations. We’ll create an implementation of this interface that denies unauthorized

Invalidate
session

275Implementing authorization
users access to the discounts page and that decides whether the Edit link is visible
based on what kind of user is signed in.

 The authorization strategy interface is defined in listing 11.6.

public interface IAuthorizationStrategy {

 boolean isInstantiationAuthorized(Class componentClass);

 boolean isActionAuthorized(Component component, Action action);

 public static final IAuthorizationStrategy ALLOW_ALL =
 new IAuthorizationStrategy() {
 public boolean isActionAuthorized(Component c, Action action) {
 return true;
 }

 public boolean isInstantiationAuthorized(final Class c) {
 return true;
 }
 };
}

This interface defines two separate events where authorization is checked:

■ On component creation
■ On specific actions on components after creation

Wicket checks component creation using component-instantiation listeners. These lis-
teners are registered with the application class, and they’re notified about every compo-
nent that is constructed. Schematically, notification looks like the diagram in figure 11.3.

Listing 11.6 IAuthorizationStrategy interface

loop [for each listener]

:Component :Application :IComponentInstantiationListener

<<create>>
notify

onInstantiation

Figure 11.3 Instantiation listeners are notified when components are in the process of
construction. Because the components are still in the first stage of constructing themselves,
construction can be vetoed safely. Even if you execute authorization-dependent functionality
in your constructor, if the listener vetoes it, that functionality won’t be executed.

276 CHAPTER 11 Securing your application
NOTE Be careful with component-instantiation listeners. They are called for
every component, so it’s important to keep your processing efficient.
Also keep in mind that the components are still under construction. The
component’s members are yet to be initialized.

The code fragment in listing 11.7 is executed in the constructor of Wicket’s Applica-
tion base class.

addComponentInstantiationListener(
 new IComponentInstantiationListener() {
 public void onInstantiation(final Component component) {
 if (!getSecuritySettings().getAuthorizationStrategy()
 .isInstantiationAuthorized(component.getClass())) {
 getSecuritySettings()
 .getUnauthorizedComponentInstantiationListener()
 .onUnauthorizedInstantiation(component);
 }
 }
});

Note that authorizing component instantiation and taking action when it fails is
abstracted in two separate interfaces. This makes it easier to write them in a generic way.

 The default authorization-strategy setting allows all components to be constructed.
The default implementation of the unauthorized-instantiation listener throws an
exception. We need custom behavior for both. In the next section, we’ll protect the
page that displays the cheese discounts so that only logged-in users can access it.

11.3.2 Protecting the discounts page

Authorization strategies work on pages as they do on regular components. After all,
pages are Wicket components like any others.

 If you want to protect certain pages
against unauthorized access, you first
have to decide how you’ll differentiate
between protected and nonprotected
pages. For instance, you could make it
a rule that protected web pages must
extend a certain base class, say Pro-
tectedPage. And of course in that case,
a sign-in page should not extend Pro-
tectedPage. In figure 11.4, you can see
this depicted for our example: Dis-
countsPage extends ProtectedPage, but SigninPage, which should be accessible
without authenticating, extends from WebPage directly.

 The next thing we need to do is to check whether the current page is extending
ProtectedPage; if it does, we have to check whether the requesting user is authenticated.

Listing 11.7 Instantiation check of authorization strategies

WebPage

SigninPage ProtectedPage

DiscountsPage

Figure 11.4 Protected and unprotected pages

277Implementing authorization
If the user isn’t authenticated, and the requested page extends ProtectedPage, we
must display the sign-in page. Otherwise, we’ll let the request proceed.

 To implement this, we create a class that implements both the authorization check
and the action to be taken when authorization fails:

public final class WiaAuthorizationStrategy implements
 IAuthorizationStrategy,
 IUnauthorizedComponentInstantiationListener

The authorization check is implemented by providing an isInstantiationAutho-
rized method:

public boolean isInstantiationAuthorized(Class componentClass) {

 if (ProtectedPage.class.isAssignableFrom(componentClass)) {
 return WiaSession.get().isAuthenticated();
 }
 return true;
}

What we do is simple: we check whether the passed-in component extends Protected-
Page, and when it does, we return whether the user is authenticated by querying the
session object. If the check returns false, the other interface is called. For that inter-
face, we provide an implementation with the same class:

public void onUnauthorizedInstantiation(Component component) {
 throw new RestartResponseAtInterceptPageException(
 SigninPage.class);
}

Here you see an interesting use of a special kind of exceptions in Wicket: abort excep-
tions. Such exceptions instruct Wicket to abort the current request, and—depending
on the implementation—take an alternative action. In this case, Wicket stops what it
was doing and redirects to the sign-in page. Wicket will also remember how the cur-
rent request was issued, so it can reissue the request when the user successfully signs
in. Remember, we did just that in the sign-in page. In figure 11.5, you can see how
abort exceptions fit into Wicket’s class hierarchy.

 Abort exceptions are designed to prematurely break the flow of processing. Just
as it’s considered bad practice to use exceptions for normal application flow
(because doing so produces code that is more difficult to follow, and because using
exceptions is relatively expensive), you shouldn’t go overboard using abort excep-
tions. But in this case, they’re exactly what we need, because if a user isn’t autho-
rized, we want to stop constructing those objects right away. Not only is this approach
more efficient, but it also does away with any risk that code will be executed (for
example, performing database calls) that should never be allowed for an unautho-
rized user.

 That’s the first step in protecting the discounts page. Users who aren’t authenti-
cated are always redirected to the login page. Only authenticating successfully gives
them access to the discounts page.

Check only
protected pages

Allow all other
components

278 CHAPTER 11 Securing your application
To make this example complete, we need to protect the edit functionality from users
who aren’t administrators. Although technically we could achieve this using pages—
we’d have a page that only displays discounts and another that also shows the Edit
link—it’s more elegant to use component-level authorization. The next section shows
you how.

11.3.3 Disabling the Edit link for unauthorized users

Let’s start with a straightforward implementation of hiding a link from users who
aren’t administrators. We do so by overriding isVisible and letting that method
return true only when the user is authenticated and is an administrator. The code is
shown in listing 11.8.

Link modeLink = new Link("modeLink") {
 public void onClick() {
 inEditMode = !inEditMode;
 setContentPanel();
 }

 @Override
 public boolean isVisible() {
 WiaSession session = WiaSession.get();
 return session.isAuthenticated() && session.getUser().isAdmin();
 }
};

Not much is wrong with this implementation. But if you were working on a large
project with many such components and with more complex authorization rules that
differed between components, you’d soon end up with a lot of code duplication.

 A declarative approach will work better here. Instead of overriding isVisble,
we declare the authorization attributes on the component. And we implement an

Listing 11.8 Protecting the mode link by overriding isVisible

AbortException

AbstractRestartResponseException AbortWithHttpStatusException

RuntimeException

RestartResponseAtInterceptPageExceptionRestartResponseException

Figure 11.5 Examples of abort exceptions

279Implementing authorization
authorization strategy: an algorithm that decides about authorization only once. We put
this in a central place.

 There are many ways to support declaring authorization attributes. We’ll use Java’s
annotation feature, which was introduced with Java 5; annotations are terse and easy
to implement. Let’s call the annotation AdminOnly. Listing 11.9 shows how the annota-
tion is defined.

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
@Inherited
public @interface AdminOnly { }

Because it doesn’t have any attributes, AdminOnly is nothing more than a tagging
interface. In real projects, you’d probably include more information, such as the kind
of roles it applies to. But in this case, we’re letting it function like an on/off switch. In
case you aren’t familiar with annotations, the statement that says the retention is run-
time means the annotation will be available at runtime, and the target annotation
declares that it’s to be used on class definitions.

 Annotations can’t be coupled to anonymous classes, so we have to make the link a
private class. Listing 11.10 shows the link annotated with AdminOnly.

@AdminOnly
private class ModeLink extends Link {

 ModeLink(String id) {
 super(id);
 }

 @Override
 public void onClick() {
 inEditMode = !inEditMode;
 setContentPanel();
 }
}

The functionality we’re after is as follows: whenever we annotate a component with
the AdminOnly annotation, the component is rendered only for users who are admin-
istrators. This is where we go back to the authorization strategy and implement the
other method of the authorization-strategy interface: isActionAuthorized. Wicket
calls this method to find out whether a component may be rendered and whether a
component is enabled. This information is used in a variety of ways, which can be spe-
cific to individual components. For instance, some form components set the dis-
abled="disabled" attribute on the tag they’re attached to, which makes the field
read-only in the user’s browser. User input isn’t allowed on disabled components
(which is an extra check, because disabled HTML input fields normally aren’t part of
form submits); and, for instance, links aren’t executed when disabled.

Listing 11.9 AdminOnly annotation

Listing 11.10 Protecting the mode link using an annotation

280 CHAPTER 11 Securing your application
 By default, Wicket ships with checks on enabled and render, but you can extend
these cases if you wish. For this example, we only care about the render action, which
is defined in Component as follows:

public static final Action RENDER = new Action(Action.RENDER);

The implementation of the action check is shown in listing 11.11.

public boolean isActionAuthorized(Component component, Action action) {

 if (action.equals(Component.RENDER)) {
 Class<? extends Component> c = component.getClass();
 AdminOnly adminOnly = c.getAnnotation(AdminOnly.class);
 if (adminOnly != null) {
 User user = WiaSession.get().getUser();
 return (user != null && user.isAdmin());
 }
 }
 return true;
}

As you can see, the implementation first checks whether the action is a render action,
after which it checks whether the component is annotated with AdminOnly. If it is, the
implementation checks whether the user is an administrator.

 When we place the user panel on the discount page, it looks like figure 11.6 for a
regular user. There is no trace of the Edit link.

Figure 11.7 shows the same page, but now it’s rendered for a user who is an
administrator.

Voila! The Edit link is available, and the discounts page is safe.

Listing 11.11 Component-level checks of isActionAuthorized

name age discount description
Gouda 0.1 Special season's offer
Edam 0.15 Fresh from the cow

Special discounts [export to csv] Signed in as Regular User English signout

Figure 11.6 Signed in as a regular user

name age discount description
Gouda 0.1 Special season's offer
Edam 0.15 Fresh from the cow

Special discounts [edit] [export to csv] Signed in as Administrator English signout

Figure 11.7 Signed in as an administrator

281Summary
11.4 Summary
In this chapter, you learned the basics of authentication and authorization with Wicket.
We made the cheese-discounts functionality secure so it’s available only for logged-in
users, and we made sure only administrators can access the edit functionality.

 We kept the authorization example simple. For instance, we used a boolean adminis-
trator property in the user object; in real life you’d probably use groups or roles
(they’re more flexible). Also, we only toggled the visibility of the Edit link. This pre-
vents users with insufficient rights from using the edit functionality, because they can’t
reach it. But this approach doesn’t prevent other programmers from instantiating the
panel without enforcing the authorization check. You could consider preventing con-
struction of the edit panel when the current user isn’t authorized. The authorization-
strategy interface is simple, but you can make the implementation of your authorization
model as fancy as you want.

 Authorization and authentication are just a subset of security. Other security con-
cepts, such as using Wicket with SSL and securing cookies, are beyond the scope for
this book. If you need more information, you can find discussions in the mailing list
archives (see for instance http://www.nabble.com/Apache-Wicket-f13974.html), and
articles on security are available on Wicket’s wiki.

 In the next chapter, we’ll keep building the discounts list example, but this time
from a different angle: internationalization and localization.

Wicket projects that implement authorization and authentication
This chapter looked at the basic mechanism for authorization and authentication. We
built an authorization strategy from scratch. Although custom strategies aren’t hard
to build from scratch, several support projects built on top of Wicket specifically tar-
get authorization and authentication.

wicket-auth-roles, one of Wicket’s core projects, provides a simple implementa-
tion based on roles and declaring security for components using either annotations
or Wicket’s metadata facility. If your needs are simple, this may be the project for
you. It’s easy to use and extend, and you may want to look at the code just to get
some inspiration.

Two Wicket Stuff projects, wicket-security-wasp and wicket-security-swarm,
take a slightly different approach. They provide a solution that is built around a central-
ized repository of authorization rules. The wicket-security-wasp project provides the
general framework, and wicket-security-swarm provides an implementation that
works like (and partially with) Java Authentication and Authorization Service (JAAS).

http://www.nabble.com/Apache-Wicket-f13974.html

Conquer the world
with l10n and i18n
As part of the previous chapter, you learned how to restrict access and optionally
render or hide components depending on the user’s session. In this chapter, we’ll
look at how you can vary what is displayed to users depending on their locale. A
locale represents a geographical, political, and/or cultural region. In computing, it
usually groups a set of parameters that represent the user’s language and country.
In Java, this is supported through the Locale object.

 Localization refers to the adaptation of your application for one or more spe-
cific locales. A related term is internationalization, which encompasses all techniques
that enable applications to be localized: being able to conveniently maintain differ-
ent languages, handling different date and number formats, using the proper
encoding type, and so forth. For the sake of simplicity, we’ll talk only about localiza-
tion in this chapter, even if it sometimes would be more precise to talk about
internationalization.

In this chapter:
■ Supporting multiple languages with your

web application
■ Is that the second of May or the fifth

of February?
282

283Conquer the world with l10n and i18n
NOTE Localization is commonly referred to as l10n, where 10 is the number of
letters between l and n. In the same fashion, internationalization is often
referred to as i18n.

Localizing components and applications can involve a large range of items. Typically,
the most important are as follows:

■ Alphabets and scripts—The ASCII character set is fine when you work with the
English language; but if you need to work with Chinese, Russian, or Thai, ASCII
won’t cut it. Unicode is a widely supported encoding scheme that enables you
to deal with a large variety of alphabets and scripts. Java standardized support
for it, and we take full advantage of these built-in capabilities.

■ Formats—Different locales typically use different formats for dates/times and
numbers. For instance, the first of February is written 2/1 in the US, but in The
Netherlands it’s written 1-2.

In addition, you need to consider a number of issues from locale to locale, such as the
patterns of bank-account numbers; government-assigned numbers like Social Security
numbers and postal codes; and things like calendars (Gregorian or Buddhist),
weights, measures, currencies, and so on. And we haven’t even scratched the surface,
when you consider cultural differences in the meaning of colors and numbers and
other locally sensitive considerations and customs.

 Wicket’s support for localization can be summed up in the following points:

■ Locale-aware support for conversions from things like numbers and dates in Java
to text, and back again. You can configure converters globally or per component.

■ Locale-aware markup loading. By following a simple naming pattern, Wicket
automatically uses the correct locale-specific markup files. This is extended
beyond locales to let you implement variations within locales.

■ Extended resource-bundle support. On top of what Java supports through
resource bundles, including the new XML format for property bundles, Wicket
has a powerful lookup system for messages that, among other things, takes the
class hierarchy and runtime component hierarchy into account. It also supports
easy-to-use parameter substitutions.

■ Special tags for localizing text on your pages without the need to explicitly mir-
ror them with Wicket Java components.

■ A range of components, models, and utility classes—such as the Localizer
class—to make creating localized web applications a breeze.

■ A message-replacement mechanism that fails fast when your application runs in
development mode but is lenient when it runs in production mode. You’ll find
bugs quickly when you’re developing; but if you miss any, your clients won’t see
error pages.

We’ll touch on most of these items when we apply them in practice with our ongo-
ing example.

284 CHAPTER 12 Conquer the world with l10n and i18n
NOTE Make sure you use the multilanguage Java Development Kit (JDK) and
have a browser that supports unicode if you need advanced localization
features.

We’ll start with how Wicket supports developing for multiple languages.

12.1 Supporting multiple languages
Probably the most important capability you need when localizing applications is the
ability to display pages in different languages. In this section, we’ll develop English,
Dutch, and Thai versions of the discounts list we developed in the previous chapter. As
a teaser, here are screenshots of the Dutch and Thai versions—you saw the English
version in chapter 11. Figure 12.1 shows the Dutch version.

 And figure 12.2 shows the Thai version.

At right on these screens is a drop-down menu that displays the current locale. It lists
the available languages (English, Dutch, and Thai) in the language of the currently
selected locale. Notice that this is the component we developed in chapter 8.

 When a user selects a locale from that drop-down menu, that locale is set as the
current one for the session. This is recognized by Wicket, and it automatically loads all
the proper markup and messages automatically.

12.1.1 Localizing the UserPanel

Instead of putting all the text directly in HTML files, as we’ve done so far, we’ll put the
locale-dependent text in separate files. It’s much easier to maintain that way (you have
all the locale-dependent text together instead of scattered throughout your markup),
and this approach enables you to let a third party do the translations.

 We’ll take the user panel as an example. Right now, the markup of the user panel
is as shown in listing 12.1.

Figure 12.1 The Dutch version of the discounts list

Figure 12.2 The Thai version of the discounts list

285Supporting multiple languages
<wicket:panel>
 Signed in as
 <i>[name]</i>
 <select wicket:id="localeSelect" />
 <a wicket:id="signout">signout
</wicket:panel>

The first step in localizing pages and com-
ponents is to identify the locale-dependent
parts. In this case, we can recognize two vari-
able parts, which are marked in figure 12.3.

 The marked parts, Signed in as and signout, haven’t yet been localized. We don’t have
to localize the user’s name, and we left out the language-selection drop-down because it
already includes localization. You can see how in the following code fragment:

public final class LocaleDropDown extends DropDownChoice {
 private final class LocaleRenderer extends ChoiceRenderer {
 public String getDisplayValue(Object locale) {
 return ((Locale) locale).getDisplayName(getLocale());
 }
 }
 ...

The custom ChoiceRenderer used by LocaleDropDown uses the getDisplayName
method of the Locale class to display options in the currently selected locale. The
getLocale method is inherited from Component, which by default calls the getLocale
method of the Session object.

 We can conveniently localize the user panel by replacing the marked parts with
<wicket:message> tags.

12.1.2 Using <wicket:message> tags
Wicket’s message tags are somewhat of an exception to how Wicket usually works. Typ-
ically with Wicket, you explicitly instantiate Java components and add them to the
component tree matching them to the markup tags. In this case, Java components are
created implicitly when <wicket:message> tags are encountered, so all you need to do
is define these tags in your markup.

 In the code fragment in listing 12.2, we replace the locale-dependent parts of the
user panel with <wicket:message> tags.

<wicket:panel>
 <wicket:message key="signed_in_as">Signed in as</wicket:message>
 <i>[name]</i>
 <select wicket:id="localeSelect" />
 <a wicket:id="signout">
 <wicket:message key="signout">signout</wicket:message>
</wicket:panel>

Listing 12.1 UserPanel.html without localization

Listing 12.2 Localized UserPanel.html using <wicket:message> tags

Figure 12.3 The user panel

getDisplayName called
with current locale

<wicket:message> tag

286 CHAPTER 12 Conquer the world with l10n and i18n
The <wicket:message> tags trigger Wicket to insert label components on the fly.
These labels use the key attribute to look up values in resource bundles, which they
then use to replace the body of the <wicket:message> tag pair.

NOTE Automatically inserted components are called auto-components through-
out the framework. It’s unlikely you’ll ever have to deal with them
directly, unless you create custom tag handlers.

The resource-bundle mechanism employed by Wicket resembles Java’s resource-
bundle mechanism, but it’s more flexible in how it can be configured and it has a more
extensive search path. Resource bundles are basically a way to provide access to a col-
lection of key/value pairs. In UserPanel.html, we have two such keys—signed_in_as

and signout—and we have as many values for each as we have languages we want to
support. Resource bundles in Java applications are typically implemented as Properties
objects, often loaded from key/value pairs stored in text files (which typically use the
.properties extension). These text files are ISO 8859-1 encoded (a popular eight-bit
encoded character set also known as Latin 1) and consist of lines of key=value pairs
(key:value and key value are supported as alternatives). If you have to write your
application for one of the roughly 25 languages and dialects that can properly be
encoded, properties files work easily. But because most of the world’s population com-
municates in languages that aren’t supported by this encoding, chances are you’ll end
up using escaped unicode, resulting in files full of strings like \u8A9E\u8A00. Fortu-
nately, since version 5, Java supports XML files for properties. The XML format sup-
ports any encoding that Java supports, including XML’s default UTF-8, at the cost of a
more verbose notation. Instead of writing

language=\u8A9E\u8A00

you can write

<entry key="language"> </entry>

which makes a lot more sense if you can read traditional Chinese. Wicket supports
both formats, so you can choose what works best for you.

NOTE You can use XML property files with Wicket 1.3 even if you use Java 1.4.

For listing 12.2, we put the messages in the file UserPanel.properties file next to the
class and HTML files, so that that part of our source tree then looks like this:

<package>
 - UserPanel.java
 - UserPanel.html
 - UserPanel.properties

UserPanel.properties then has the following contents:

signed_in_as=Signed in as
signout=signout

When Wicket looks for messages, as it does in the user panel triggered by the message
tag, it starts by trying to locate a properties file next to the closest component it can

287Supporting multiple languages
find. In this case, the closest component that has messages associated is the user
panel; the message tags are nested in that panel, and none of the other parent compo-
nents (note that the link with the identifier signout is a parent of a <wicket:mes-
sage> tag) have messages.

 The UserPanel.properties file is used when no better matches are found. In con-
trast, the bundles for Dutch and Thai are used only when that specific locale is the
current one. Including the bundles for the Dutch and Thai locales, the package looks
like this:

<package>
 - UserPanel.java
 - UserPanel.html
 - UserPanel.properties
 - UserPanel_nl.properties
 - UserPanel_th.xml

You can see that—as with Java’s property-based resource bundles—the locale informa-
tion is part of the filename. The (partial) pattern is as follows:

base name ["_" language["_" country]["_variant"]] (".properties" /".xml")

In our case, the base filename is UserPanel (which is the name of the matching com-
ponent class). Wicket tries to match the locale as specifically as possible. For instance,
the Dutch locale for someone in The Netherlands is nl_NL, but the Dutch locale for
someone in Belgium is nl_BE. Neither of these is found here, so Wicket tries to match
on the language next, which is UserPanel_nl.

 Wicket tries both the properties and xml extensions (xml first); it does so for all
the language/variant/country combinations.

 Let’s look at the contents of the Dutch and Thai message files, where the Dutch
version is maintained in a regular properties file and the Thai version in the new XML
format. Here’s the Dutch version:

signed_in_as=Aangemeld als
signout=afmelden

And here’s the Thai version:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="signed_in_as"> </entry>
 <entry key="signout"> </entry>
</properties>

Many text editors nowadays are able to recognize XML files, and most of them will
switch to the appropriate encoding for editing. They do this by interpreting the decla-
ration (the first line of the XML file, which should always contain <?xml). In the previ-
ous listing, the encoding is declared to be UTF-8 (unicode).

288 CHAPTER 12 Conquer the world with l10n and i18n
AN ALTERNATIVE TO USING MESSAGE TAGS

Instead of using <wicket:message> tags, we could have used normal Label compo-
nents, like this:

Label signedInAs = new Label("signedIdAs", new
 ResourceModel("signed_in_as"));

Although labels are great for displaying information such as the name of the current
user or the result of a calculation, here we just need only a lookup following a fixed
algorithm. An advantage of <wicket:message> tags over plain labels like those in the
previous snippet is that you don’t need to synchronize the Java and markup hierarchy.
Having to synchronize the two is usually a minor nuisance, but with text it can become
a major headache; moving pieces of text from one area on the page to another is
something you’ll probably do more often than, for instance, moving forms or tables.

 We already hinted that Wicket’s resource-bundle mechanism is similar to the one
that Java provides out of the box, but more powerful. This is due to the way Wicket
locates the resource bundles, which is the topic of the next section.

12.1.3 The message-lookup algorithm

The path Wicket uses to look up message bundles (.properties or .xml files), can be
defined as follows:

session = The current user session
component = The component that initiated the resource lookup
name = The name of the class of the component that is currently input
 for the search, starting with the name of component
style = [component.variation""_""[session.style""_""]]
ext = (".properties" /".xml")
path = name["_"style["_" language["_" country]["_variant"]]]ext

First, Wicket uses the entire path. If no matches are found, Wicket traverses the path from
specific to generic, ending with the shorter path, where it takes into account the case with
no style and locale. For example, with the style mystyle, the language nl, the country
NL, and no variant, the lookup goes like this:

1 name_mystyle_nl_NL.xml
2 name_mystyle_nl_NL.properties
3 name_nl_NL.xml
4 name_nl_NL.properties
5 name_nl.xml
6 name_nl.properties
7 name.xml
8 name.properties

The name component is variable and—as we defined—equals the name of the com-
ponent that currently serves as the search input. The algorithm for trying the compo-
nents works as follows:

289Supporting multiple languages
1 Wicket determines the component that is the subject for the message. How this
is determined depends on the component, model, or other variables. Typically
it’s the component that uses the resource model. The subjects of the Wicket
message tags are the auto-components that are inserted at runtime.

2 Wicket determines the hierar-
chy the component resides in
and creates a search stack for
it. This equals the subject com-
ponent plus all its parents up
to the page level, but in reverse
order. For the Wicket message
tags used in the user panel, the
search stack is as shown in fig-
ure 12.4.

3 When the search stack is determined, Wicket works from the top of the stack
down to the subject component until it finds a match. For each component in
the stack, Wicket performs the variation/style/locale matching described at the
start of this section.

4 For the components between the page and the subject, Wickets takes the
component identifiers into account as well. Declarations with the identifier
of the immediate parent preceding the actual key have precedence over the
plain keys.

Currently, the resources are defined in UserPanel.properties (and the language vari-
ants UserPanel_nl.properties and UserPanel_th.xml). If we add DiscountsPage.prop-
erties with the key signed_in_as, that declaration will take precedence over the ones
defined on the panel. If we add userPanel.signed_in_as to that file (in the form
id.key), it will take precedence.

 Using message bundles like this is easy and flexible. But Wicket’s support for multi-
ple languages doesn’t end here. In the next section, you’ll see that the magical nam-
ing trick applies to markup files as well.

12.1.4 Localized markup files

The trick you just saw for resource bundles works the same for markup templates. As
an alternative to separate resource bundles, you can have different markup files for
each locale.

 Let’s change the way we implemented UserPanel as an example. The new struc-
ture looks like this:

<package>
 - UserPanel.java
 - UserPanel.html
 - UserPanel_nl.html
 - UserPanel_th.html

DiscountsPage

UserPanel (id='userPanel')

MessageLabel (autocomponent, key='signed_in_as')

Figure 12.4 Search stack for one of the
<wicket:message> tags in the user panel

290 CHAPTER 12 Conquer the world with l10n and i18n
UserPanel.html is the English version and serves as the default. If your locale is Chi-
nese (a locale we don’t support in this example), the English version is shown.

 If we didn’t separate the locale-dependent parts from the rest of the markup, but
instead relied on the localized loading of the templates, UserPanel’s markup would be
as shown in listing 12.3.

<wicket:panel>
 Signed in as
 <i>[name]</i>
 <select wicket:id="localeSelect" />
 <a wicket:id="signout">
 signout

</wicket:panel>

The Dutch UserPanel would look like listing 12.4.

<wicket:panel>
 Aangemeld als
 <i>[name]</i>
 <select wicket:id="localeSelect" />
 <a wicket:id="signout">
 afmelden

</wicket:panel>

As you can see, we don’t need the <wicket:message> tags; we use the text for the
proper language directly.

 But the Thai version, is shown in listing 12.5, has a catch.

<?xml version="1.0" encoding="UTF-8"?>
<wicket:panel>

 <i>[name]</i>
 <select wicket:id="localeSelect" />
 <a wicket:id="signout">

</wicket:panel>

Note that the first line is an XML declaration. The Thai language consists of characters
that can’t be expressed as ASCII characters. One way to properly encode the Thai
characters is to write the template in UTF-8 encoding. If you start your markup files
with such a declaration, Wicket will recognize that the file should be read in as a UTF-8
stream. The declaration is optional but recommended. Because it’s outside the
<wicket:panel> tags, it’s ignored for the rest of the processing, so you don’t see the
declaration back in your pages.

Listing 12.3 UserPanel.html without <wicket:message> tags

Listing 12.4 UserPanel_nl.html

Listing 12.5 UserPanel_th.html

291Customizing resource loading
TIP It’s good practice to start your panels and borders (and possibly your
pages) with an XML declaration to force Wicket to work with them using
the proper encoding. It’s also good practice to explicitly provide a doc-
type declaration so the browser doesn’t have to guess how to interpret
the markup.

In the last two sections, we looked at Wicket’s locale matching for resource bundles
and markup files. The powerful pattern that Wicket employs is used for everything
that goes through Wicket’s resource-lookup mechanism, like packaged CSS and Java-
Script files, but also packaged images. For instance, if we wanted to display the flag of
the current locale, we could include an image in the markup like this:

<wicket:link></wicket:link>

In our package, we’d have flag.gif, flag_nl.gif, and flag_th.gif. Wicket would automati-
cally load the appropriate flag for the current locale.

NOTE Instead of adding an image component in Java and an img tag with a
wicket:id attribute in our markup, we embedded the tag in
<wicket:link> tags. You can use <wicket:link> tags for normal links,
images, JavaScript, and stylesheet declarations.

Working with separate markup files per locale/style gives you maximum flexibility, but
using resource bundles with one markup file is the better choice for most people.
Message bundles can be maintained separately, and they’re also more flexible in how
they’re located; for example, you can include the messages at the page or application
level, whereas markup must always directly match the components.

 You can even mix the approaches. Both have one thing in common: they use the
same mechanism to load the resources, whether they’re properties files or markup
files (HTML). In the next section, we’ll leave localization for a bit and investigate how
you can customize the way Wicket searches for resources.

12.2 Customizing resource loading
A common question on the Wicket user list is how to deviate from Wicket’s pattern of
placing Component’s markup files next to the component’s class files (this typically
means you’ll put them next to your Java files, relying on the build system to place cop-
ies of the markup files into the directory the class files are written to).

NOTE Here, when we talk about resources, we mean markup and resource bun-
dles, not the request-handling resources we discussed in chapter 10.
Wicket locates resources using resource-stream locators, which are
abstracted in the IResourceStreamLocator interface; this interface has
the default implementation ResourceStreamLocator.

The code fragment shown in listing 12.6 is an example of a custom resource-
stream locator.

292 CHAPTER 12 Conquer the world with l10n and i18n
public class MyResourceStreamLocator extends ResourceStreamLocator {

 private final File baseDir;

 public MyResourceStreamLocator(File baseDir) {
 this.baseDir = baseDir;
 }

 public IResourceStream locate(Class clazz, String path) {
 File file = new File(baseDir, path);
 if (file.exists()) {
 return new FileResourceStream(file);
 }
 return super.locate(class, path);
 }
}

This class takes a directory as a constructor argument and uses it as the base for looking
up resources. A typical locate request has a class argument like myapp.MyComponent
and a path argument like myapp/MyComponent_en.html.

 If your base directory is /home/me, then the example request resolves to /home/
me/myapp/MyComponent_en.html. In the example, we override ResourceStream’s
locate method with two arguments. Note that this method is called by Resource-
StreamLocator, which among other things tries to match with the most specific locale
first. If the locate invocation returns null, it’s an indication that the locator should try
other combinations (for instance, myapp/MyComponent.html) before giving up.

TIP It’s highly recommended that you extend ResourceStreamLocator rather
than implement the IResourceStreamLocator interface directly, and let
your implementation call the appropriate superlocator method when it
can’t find a resource. Components you reuse may rely on the resources
being packaged with the classes. ResourceStreamLocator will fall back to
loading resources relative to classes when custom loading fails.

You register the custom resource locator in your application object’s init method, as
shown in listing 12.7.

public class MyApplication extends WebApplication {

 public MyApplication() {
 }

 public Class getHomePage() {
 return Home.class;
 }

 protected void init() {
 File baseDir = new File("/home/me");
 IResourceStreamLocator locator =

Listing 12.6 Custom resource-stream locator

Listing 12.7 Registering the custom resource-stream locator

Extend default
implementation

Fall back
to default

293Localized conversions
 new MyResourceStreamLocator(baseDir);
 getResourceSettings().setResourceStreamLocator(locator);
 }
}

That’s all there is to it.
 Wicket has some convenient implementations. Alternatively, we could implement

the previous example like this:

protected void init() {
 IResourceStreamLocator locator =
 new ResourceStreamLocator(new Path(new Folder("/home/me")));
 getResourceSettings().setResourceStreamLocator(locator);
}

This uses a Path object, which in turn is an implementation of IResourceFinder,
which is a delegation interface that is used by ResourceStreamLocator.

 Now that you know the lookup mechanism can be customized, please heed the fol-
lowing warning. Wicket’s default way of locating resources enables you to quickly
switch between the Java files and markup files during development because they’re
right next to each other. Also, with this algorithm, your packaged components are
immediately reusable without users having to configure where the templates are loaded
from; if the components’ classes can be found in the class path, so can their resources.
It’s a powerful default, and you may want to think twice before you implement some-
thing custom.

 So far, we’ve primarily been looking at localized text output. In the last section of
this chapter, we’ll discuss localized model conversions, which you use to localize values
that are stored in models.

12.3 Localized conversions
Wicket has a mechanism for handling objects that have different string representa-
tions depending on the locale. Examples of such objects are numbers and dates. The
string 100,125 is interpreted as a different number depending on the locale. Ameri-
cans interpret it as one hundred thousand, one hundred and twenty-five; Dutch people
interpret it as one hundred and one eighth. In the same fashion, the string 10/12 in the
context of dates represents the twelfth of October for Americans and the tenth of
December for Dutch people. If your application is supposed to serve different nation-
alities in their own ways, you must format numbers, dates, and possibly other objects
differently according to the user’s locale.

 The objects responsible for such conversions in Wicket are called converters.

12.3.1 Wicket converters

Even if you aren’t interested in formatting numbers and dates for specific locales, you
still need a mechanism to switch between strings (HTML/HTTP) and Java objects and
back again. You can build conversions into your components or models. Listing 12.8
shows an example where a model takes care of the locale-dependent formatting.

294 CHAPTER 12 Conquer the world with l10n and i18n
public class NumberFormatModel implements IModel {

 private final IModel wrapped;

 public NumberFormatModel(IModel numberModel) {
 this.wrapped = numberModel;
 }

 public Object getObject() {
 Number nbr = (Number) wrapped.getObject();
 return nbr != null ? getFormat().format(nbr) : null;
 }

 public void setObject(Object object) {
 try {
 if (object != null) {
 wrapped.setObject(getFormat().parse((String) object));
 } else {
 wrapped.setObject(null);
 }
 } catch (ParseException e) {
 throw new RuntimeException(e);
 }
 }

 private NumberFormat getFormat() {
 NumberFormat fmt = NumberFormat.getNumberInstance(Session.get()
 .getLocale());
 return fmt;
 }

 public void detach() {
 }
}

Using this model looks like this:

Double number = 100.125;
new Label("number", new NumberFormatModel(new model(number)));

The disadvantage of using models for this purpose is that you must always be aware of
this wrapping—forget it, and you’ll get typing errors. In addition, there is no way to be
sure conversions are executed across the board.

 This is why Wicket has a separate mechanism
for conversions. The main interface of this
mechanism is IConverter (see figure 12.5).

 To illustrate how this works, let’s look at how
the Label component renders its body and the
process of triggering the use of a converter.

 While rendering pages, Wicket asks components to render themselves to the out-
put stream. That process is broken into a couple of steps, and onComponentTagBody is
one of the methods a component uses to delegate a specific piece of work. Containers

Listing 12.8 Utility model that formats values of the nested model

convertToObject(String, Locale) : Object
convertToString(Object, Locale) : String

IConverter

Figure 12.5 The converter interface

295Localized conversions
(components that can contain other components) delegate rendering to the compo-
nents nested in them. But some components, like Label (which isn’t a container),
provide their own implementation of this method. Here is that implementation for
the Label component:

protected void onComponentTagBody(final MarkupStream markupStream,
 final ComponentTag openTag) {
 replaceComponentTagBody(markupStream, openTag,
 getModelObjectAsString());
}

The interesting part is the call to getModelObjectAsString, which is a method of
the component base class. You can see its implementation in listing 12.9 (comments
are stripped).

public final String getModelObjectAsString() {
 final Object modelObject = getModelObject();
 if (modelObject != null) {
 IConverter converter = getConverter(modelObject.getClass());
 final String modelString =
 converter.convertToString(modelObject, getLocale());
 if (modelString != null) {
 if (getFlag(FLAG_ESCAPE_MODEL_STRINGS)) {
 return Strings.escapeMarkup(modelString, false, true)
 .toString();
 }
 return modelString;
 }
 }
 return "";
}

This method gets a converter instance, which it uses to convert the model object to a
string using the convertToString method. The implementation of that method uses
a NumberFormat in the same fashion as the custom model we looked at earlier.

 Because converters are always used for the appropriate types, we can rewrite the
previous code fragment as follows:

Double number = 100.125;
new Label("number", new Model(number));

This code fragment works for numbers, dates, and anything else for which converters
are registered. Wicket’s default configuration is probably good for 95% of use cases.

 But the default configuration may be insufficient at times. In the next section, we’ll
look at how you can provide custom converters.

12.3.2 Custom converters

In this section, we’ll look at how you can customize conversions for individual compo-
nents or an entire application. The first step a component executes when locating a

Listing 12.9 getModelObjectAsString method of Component

296 CHAPTER 12 Conquer the world with l10n and i18n
converter is to call its getConverter method—and there we have the first opportunity
for customization. We discussed this customization in chapter 9, when we imple-
mented a percentage field. Let’s look at it again in a bit more detail.
CUSTOMIZING CONVERSION FOR ONE COMPONENT

You may want to use this customization when, for example, you want to deviate from
the application-wide registered converter. For instance, you may want to display a date
formatted with the months fully spelled out, but the converter installed on the appli-
cation displays months as numbers.

 Another good use case is when the conversion is an integral part of your compo-
nent. An example of this is a URL text field. If you want to write a URL text field that
works in all projects, you can pin down the converter (override getConverter and
make it final) and return your URL converter there. That way, you guarantee that the
appropriate conversion is performed, no matter how the application is configured.

 The URL text field is implemented in listing 12.10.

public class UrlTextField extends TextField {

 public UrlTextField(String id) {
 super(id, URL.class);
 }

 public UrlTextField(String id, IModel object) {
 super(id, object, URL.class);
 }

 @Override
 public final IConverter getConverter(Class type) {

 return new IConverter() {

 public Object convertToObject(String value, Locale locale) {
 try {
 return new URL(value.toString());
 } catch (MalformedURLException e) {
 throw new ConversionException("'" + value
 + "' is not a valid URL");
 }
 }

 public String convertToString(Object value, Locale locale) {
 return value != null ? value.toString() : null;
 }
 };
 }
}

This text field overrides any globally defined converter and provides its own. When
it renders, convertToString is called, and the URL is returned as a string; and
when values are set on the text field (typically through a user providing input),
convertToObject converts the string (which comes from the HTTP request) to a
proper URL object again.

Listing 12.10 URL text field using a custom converter

Override
getConverter

Throw
ConversionException

297Localized conversions
 There is a thin line between where it’s appropriate to use a custom model and
where it’s best to use a custom converter. Not everyone on the Wicket team agrees, but
we like the layering that custom converters enable. Converting from and to URLs is an
obvious case for a converter, but formatting a mask is debatable. For instance, look at
the code fragment in listing 12.11.

add(new TextField("phoneNumberUS", UsPhoneNumber.class) {
 public IConverter getConverter(final Class type) {
 return new MaskConverter("(###) ###-####",
 UsPhoneNumber.class);
 }
});

In this case, because you aren’t merely converting between types, but altering the
user’s input and the output that is rendered, you may as well use an explicit model. It’s
largely a matter of taste which approach you choose.

 What if you want to install custom conversions for the entire application? You do so
with converter locators.
USING APPLICATION-SCOPED CONVERTER LOCATORS

A converter locator is an object that knows where to get converter instances for the appro-
priate types. An application has one instance, and this instance is created by the imple-
mentation of newConverterLocator, which is an overridable method of Application
that is called when the application starts up.

 If you want to provide a custom converter locator and configure the existing one,
you can override newConverterLocator in your application. Listing 12.12 is an exam-
ple that installs a URL converter for the entire application.

protected IConverterLocator newConverterLocator() {
 ConverterLocator locator = new ConverterLocator();
 locator.set(URL.class, new IConverter() {
 public Object convertToObject(String value, Locale locale) {
 try {
 return new URL(value.toString());
 } catch (MalformedURLException e) {
 throw new ConversionException("'" + value
 + "' is not a valid URL");
 }
 }

 public String convertToString(Object value, Locale locale) {
 return value != null ? value.toString() : null;
 }
 });
 return locator;
}

Listing 12.11 Using a converter to force a mask

Listing 12.12 Installing a converter for an application

Default converter
locator

298 CHAPTER 12 Conquer the world with l10n and i18n
Voila! Now we don’t even need a URL text field. We can just do this

new TextField("url", new PropertyModel(this, "url"), URL.class);

or—because property models introspect the target type—this should suffice:

new TextField("url", new PropertyModel(this, "url"));

Note that in this example, we instantiate the default ConverterLocator rather than
implement the IConverterLocator interface from scratch. Doing the latter is possi-
ble, but the default converter locator is designed to be easily extended.

12.4 Summary
We used this chapter to look at different aspects of localizing your web applications
with Wicket. The two main things we discussed were how to support multiple lan-
guages with <wicket:message> tags and localized markup (with a detour to explain
how you can customize the way markup is loaded), and how converters work and can
be customized.

 We’ve used example data in several occasions in this book, but we haven’t paid
much attention to where this data comes from. In the next chapter, we’ll examine how
you can use Wicket to build database applications.

Multitiered architectures
So far, we’ve looked at the individual nuts and bolts of Wicket through the use of
simple examples. We’ve developed a virtual cheese store with functionality to
browse through a catalogue, place orders, view discounts, and edit those discounts.
The big thing missing from those examples is what you’d almost certainly have in
real life: a database that stores the orders, discounts, and so on.

 In this chapter, we’ll look at a common pattern of organizing source code into
layers. We’ll use the Spring framework to manage one of these layers—the business
layer—and we’ll use Hibernate as a tool to access the database in a transparent
(object-oriented) way. In the fashion of the last five chapters, we’ll further build on
the cheese discounts list.

In this chapter:
■ The three-tiered service architecture
■ Dependency injection and why it matters
■ Creating a layered application using Wicket,

Spring, and Hibernate
299

300 CHAPTER 13 Multitiered architectures
13.1 Introducing the three-tiered service architecture
The architectural pattern of dividing your application into tiers (layers) with their own
responsibilities as we’ll describe is commonly used for creating web applications and is
often called a three-tiered service architecture. Schematically, it looks like figure 13.1.

 The presentation tier takes care of the UI. All the pages, components, models, and
behaviors that are part of an application logically belong to this tier.

 The logical (or business) tier is where the business logic resides. Components in
this layer know how business processes work, how to perform business-specific calcula-
tions, how to aggregate data from multiple sources, and so forth. This layer typically
consists of a number of services and can also be referred to as the service layer.

 Finally, the DAO knows how to physically get data from sources like databases, web ser-
vices, and file systems. This layer typically consists of a number of DAOs with which you
abstract whether data is retrieved using regular JDBC or using an ORM tool such as Hiber-
nate. The logic in this layer is typically related to the kind of resource that is accessed,
whereas the logic in the business layer is typically specific to the business domain.

 This architecture is useful to keep in mind as a rough sketch. In practice, the sepa-
rations between layers aren’t strict and unambiguous. For instance, the domain model
may in one diagram be placed in the business layer, in another be in the data access
layer, and in yet another may be drawn separately; after all, domain objects are typi-
cally used by all layers. Whether you let your UI layer access the data layer directly or
always let it go through the business layer is largely a matter of taste.

 The more strictly you keep the layers separated, the easier it will be to maintain
this arrangement over time; but it comes at a cost of having to cope with more plumb-
ing work. And all the indirections you’ll encounter with this approach don’t make
your code prettier.

 Why would you want to have a layered architecture in the first place?

Data

Presentation tier

Logical/ Business tier

Access tier

security

m
anagem

ent

Figure 13.1 The three-tiered service architecture

301Introducing the three-tiered service architecture
13.1.1 Advantages of utilizing a layered architecture

Loose coupling is an important design goal when you’re developing software. In a sys-
tem that is loosely coupled, the different parts (like classes, components, and groups
of classes) make minimal assumptions about how other parts work, so parts can be
replaced without forcing changes in other parts of the system.

 Layering is a common technique to achieve loose coupling. You should be able to
change how (parts of) the business layer or data access layer are implemented without
affecting the presentation layer and vice versa. You shouldn’t have to rewrite your pre-
sentation layer when you decide to get a piece of data from a web service instead of
a database.

 Your application’s layers likely have different characteristics for resource utilization.
With the layered approach, you can put those layers on different machines (or clusters
of machines) that are optimized for their particular resource-utilization characteristics.

 Having several layers also makes it easier to break up work. You can have people
working on the business layer while others work on the data layer or presentation layer.

 Finally, the boundaries between the layers are often the right place for transaction
demarcation. In the presentation layer, you typically work with volatile objects, and
you use the business layer to make changes persistent or create new persistent objects.

 To achieve independence of implementation between the layers, you need to let
your software talk to interfaces rather than concrete classes between the layers. But who
is in charge of creating the concrete classes, and how do you resolve dependencies?
How do you avoid one layer knowing about the implementation details of another
layer? These questions need to be answered in order to create loosely coupled systems,
and a good understanding will help you create enterprise Wicket applications.

 We’ll search for answers in the next section.

13.1.2 Who is in charge of the dependencies?

One of the biggest buzzwords in software engineering in the last few years has been
dependency injection (DI). The term was coined by Martin Fowler in 2004 as a special
variation of inversion of control (IoC).

 IoC, which is also known as the Hollywood Principle (“Don’t call us, we’ll call
you”), is the rule of letting your software be called by a framework rather than
instructing your software to call that framework. For example, you can trust Wicket to
initiate the rendering of components when requests come in. This shields you from
having to write a lot of plumbing code; and complicated implementation details for
handling requests (when to call what, how to handle exceptions, synchronization, and
so on) are abstracted away in the framework. You focus on implementing the behavior
that is relevant for your particular application.

 DI is a special subvariant of IoC in that it only involves resolving dependencies.
Instead of letting your code resolve dependencies, you let a framework do it. To illus-
trate, let’s first look at code that doesn’t use DI.

302 CHAPTER 13 Multitiered architectures
13.1.3 Code without dependency injection

In the course of this chapter, we’ll transform the discounts list component to use a ser-
vice object to query for discounts. We’ll define the interface DiscountsService,
which is backed by a concrete implementation DiscountsServiceImpl. It’s possible to
have multiple implementations of the interface. For instance, you could have a spe-
cific implementation for testing that instead of a database uses a set of in-memory
data. You want to let the discounts-list component be unaware of the actual implemen-
tation that’s used. It should talk to the interface without knowledge of the concrete
class backing it.

 If that is our goal, then the following code isn’t what we want:

public class DiscountsList extends Panel {
 private DiscountsService service;

 public DiscountsList(String id) {
 service = new DiscountsServiceImpl();

The discounts-list component instantiates a specific implementation. We can’t swap
the implementation for another one without having to recompile the discounts list.
(We also have no central control over which instance is used and how many instances
are created in the application.)

 As is now in vogue in Java programming (and many other languages), we could
employ a lightweight container (such containers are light in comparison to heavy EJB
containers) to couple concrete implementations to interfaces. Registering an inter-
face with an implementation could, for instance, look like this:

 Container.getInstance()
 .install(DiscountsService.class, new DiscountsServiceImpl());

The discounts list could then be as follows:

public class DiscountsList extends Panel {
 private DiscountsService service;

 public DiscountsList(String id) {
 service = Container.getInstance().locate(DiscountsService.class);

In this version, the discounts list doesn’t have any knowledge of the concrete imple-
mentation of the discounts service, and the container acts as a factory that takes care
of all that. Now, if we replace the implementation with a test implementation, we
change the configuration of the container:

 Container.getInstance()
 .install(DiscountsService.class, new DiscountsServiceTestImpl());

In the constructor, we’re letting the discounts list locate the instance of discounts service
it needs. Using a lookup service (Container in this example) to resolve dependencies is
often called the service locator pattern. JNDI is a famous example of this pattern.

 Using a service locator is better than letting the discounts list instantiate the imple-
mentation itself, but we’re not quite there yet. The discounts list now has a direct

303Introducing the three-tiered service architecture
dependency on the service locator, and if we want to change the implementation of
the discounts service, we’ll have to adjust the container’s configuration. And because
the code for locating the service is hard-coded in the component, we can’t directly
assemble the objects ourselves.

 We need a way to resolve dependencies without any special construction or lookup
code in our components. We can do this using DI.

13.1.4 Dependency injection to the rescue

When you use DI, you ask the container to not only manage the creation and lookup
of the appropriate implementations, but also set the dependencies on each of the
objects it manages. For instance, the discounts service uses the discount DAO (from
the data access layer) to access persistent data:

public class DiscountsServiceImpl implements DiscountsService {
 private DiscountDao discDao;
 public DiscountDao getDiscountDao() { return discDao; }
 public void setDiscountDao(DiscountDao dao) { this.discDao = dao; }
 public List<Cheese> findAllDiscounts() { return discDao.findAll(); }
 ...

For testing, we can set the discount DAO dependency ourselves:

DiscountsService service = new DiscountsServiceImpl();
service.setDiscountDao(new DummyDiscountDaoImpl());
List<Cheese> Cheeses = service.findAllCheeses();

For normal operations, we can configure the container like this:

Container c = Container.getInstance();
DiscountsService service = new DiscountsServiceImpl();
service.setDiscountDao(new MySQLDiscountDaoImpl());
c.install(DiscountsService.class, service);

When we ask the container to locate the discounts service instance, we get the
instance of the discounts service with the appropriate discount DAO dependency
set—with no specific code in the discounts service. We injected the dependencies
when configuring the container; and doing that from the outside, rather than from
within the container class, is the core idea of DI.

 Note that during testing, the discount DAO interface is bound to a different imple-
mentation than it is when configured for normal operation. Different implementa-
tions behind interfaces is a variant of the strategy pattern, which describes the ability
to swap algorithms at runtime.

 Several good open source frameworks specialize in DI. The primary DI frameworks
at the time of writing are Spring and Guice; other alternatives include PicoContainer
and HiveMind. Guice is our favorite flavor, and Wicket has good support for it, but
Spring is without a doubt the most widely used of the bunch. We’ll use Spring to build
the example in the rest of this chapter.

304 CHAPTER 13 Multitiered architectures
TIP The Manning books Dependency Injection (Dhanji Prasanna, 2008) and
Spring in Action (Craig Walls and Ryan Breidenbach, 2007) are excellent
sources for more information about DI implementations.

In the next part of this chapter, we’ll convert the cheese discounts list example to let it use
the three-tiered service architecture. We’ll create three layers for the example, and we’ll let
Spring manage those layers. The result will be a Wicket application that is loosely coupled
and that has clear boundaries for things like transaction demarcation, logging, and caching.

13.2 Layering Wicket applications using Spring
In this section, we’ll break the discounts-list example into layers. For the sake of the
example, we’ll stick to a strict separation of layers, even though this means the busi-
ness layer isn’t doing much more than sending requests to the data layer. You’ll have
to judge whether a stringent layer approach suits your situation or whether you want
to be more lenient—or even go for a completely different approach. For example, an
additional layer may give you flexibility in demarcating transaction boundaries.

 Figure 13.2 illustrates what part of the discounts-list example looks like when it’s
built according to the three-tiered architecture.

presentation
business

setContentPanel() : void
inEditMode : boolean

DiscountsPanel

service : DiscountsService

DiscountsList

findAllDiscounts() : List<Discount>
saveDiscount(Discount) : void
deleteDiscount(Discount) : void

<<interface>>
DiscountsService

...
 discountDao : DiscountDao

DiscountsServiceImpl

data

findAllDiscounts() : List<Discount>
saveDiscount(Discount) : void
deleteDiscount(Discount) : void

<<interface>>
DiscountDao

...
sessionFactory : SessionFactory

DiscountDaoImpl

getCurrentSession() : Session

<<interface>>
SessionFactory

...
dataSource : DataSource

SessionFactoryImpl

Figure 13.2 The discounts-list example in layers

305Layering Wicket applications using Spring
As you can see from the diagram, the Wicket components are part of the presentation
layer, the discounts service makes up the business layer, and the discount DAO and the
Hibernate session factory (more on Hibernate later in this chapter) are part of the data
access layer. We left out the domain objects (Cheese, Discount, User) because it isn’t
immediately clear whether they should be part of the business layer or the data access
layer (or neither).

 Note that these layers can exist in the same project—even in the same package if
you wish, although you’d typically stress the distinction by using separate packages.
See figure 13.3 for the package structure we came up with for this example.

 We’ll use Spring to wire up the interfaces to their appropriate implementations.
The next section will introduce the Spring framework and show how we’ll integrate it
in the discounts-list example.

13.2.1 Spring time!
The Spring framework was conceived by Rod Johnson when he wrote Expert One-on-
One J2EE Design and Development (Wrox, 2002). Johnson outlines many problems that
existed with developing Java applications using the Java Enterprise Edition (J2EE)
platform, and the solutions he proposed form the basis of the Spring framework.

 Although the Spring framework encompasses more than just DI, its support for the
strategy pattern combined with DI has arguably been one of its largest success factors.

Figure 13.3

The package structure
after layering the
discounts-list example

306 CHAPTER 13 Multitiered architectures
 Spring is typically configured using an XML file. In that XML file, you use <bean>
tags to define the software modules (beans) you want Spring to manage for you;
within these tags, you use <property> tags to identify bean properties (dependencies)
that should be injected by Spring.

 Listing 13.1 shows a fragment for configuring the discounts service and DAO.

<bean id="dataSource"
 class="com.mchange.v2.c3p0.ComboPooledDataSource">
 <property name="driverClass">
 <value>${jdbc.driver}</value>
 ...
</bean>

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.annotation.
AnnotationSessionFactoryBean">
 <property name="dataSource">
 <ref bean="dataSource" />
 </property>
 ...
</bean>

<bean id="DiscountDao"
 class="dbdiscounts.dao.hibernate.DiscountDaoImpl">
 <property name="sessionFactory" ref="sessionFactory" />
</bean>

<bean id="DiscountsService"
 class="dbdiscounts.services.DiscountsServiceImpl">
 <property name="discountDao" ref="DiscountDao" />
</bean>

The discounts service declares the property discountDao as a reference to the bean
named DiscountDao. That bean is coupled to the DiscountDaoImpl class in the con-
figuration. By default, Spring creates one instance of the class—a singleton—and
shares that instance with all clients. This is typically fine for service objects, because
they rarely carry state for particular clients. After Spring creates the instance, it sets
the dependencies by matching the property names with setter methods of the class.
The discountDao property will be matched with setDiscountDao of the Discount-
DaoImpl class.

 In the next section, we’ll look at how to configure Wicket to use Spring.

13.2.2 The simplest way to configure Wicket to use Spring

The easiest way to configure Wicket to use Spring is to bootstrap Spring in your web
application and expose methods to either get the Spring context directly or, if you
want to avoid Spring dependencies in your components, get references to the services
and DAOs. Listing 13.2 illustrates this.

Listing 13.1 Spring fragment to configure the discounts service and DAO

Property references
other bean

307Layering Wicket applications using Spring
public class WicketInActionApplication extends WebApplication {

 private ApplicationContext ctx;

 @Override
 protected void init() {
 ctx = new ClassPathXmlApplicationContext("applicationContext.xml");
 ...
 }

 public DiscountsService getDiscountService() {
 return (DiscountsService) BeanFactoryUtils.beanOfType(ctx,
 DiscountsService.class);
 }
 ...

The discounts-list component can then use the discounts service like this:

add(new RefreshingView("discounts") {
 @Override
 protected Iterator getItemModels() {
 DiscountsService service =
 WicketInActionApplication.get().getDiscountService();
 return new DomainModelIteratorAdaptor<Discount>(
 service.findAllDiscounts().iterator()) {
 ...

You probably noticed that we use Spring here with the service locator pattern. There
isn’t much wrong with using this pattern, but there are safer and more elegant ways to
use Spring, as you’ll see in the next few sections.

13.2.3 Using proxies instead of direct references
One problem with the code from the previous section is that it can lead to memory leaks.
Be careful never to hold a reference to a Spring bean in your components. Spring often
creates proxies for the beans it creates (for instance, to support transactions), and when
Wicket serializes your components—as it does for every request, if you use the default ses-
sion store—you may end up serializing the entire Spring container with them.

 The following code fragment is problematic (note the private class-level variable):

private DiscountsService service =
 WicketInActionApplication.get().getDiscountService();
public DiscountsList(String id) {
 super(id);
 add(new RefreshingView("discounts") {
 @Override
 protected Iterator getItemModels() {
 return new DomainModelIteratorAdaptor<Discount>(
 service.findAllDiscounts().iterator()) {
 ...

This can be fixed by creating proxies to the services and DAOs and returning those
instead of the objects Spring provides. When implemented properly, clients can keep
references without running into trouble when serialization rears its ugly head.

Listing 13.2 Bootstrapping Spring in the Wicket application class

308 CHAPTER 13 Multitiered architectures
 Note that variables declared in the scope of methods or constructor bodies are
never serialized—they only exist during the execution of the methods—and are thus
never problematic.

 The wicket-spring project comes with a good implementation of such proxies.
We’ll look at these in the next section.

13.2.4 Using proxies from the wicket-spring project
The wicket-spring project contains a number of classes that make it easier to integrate
Spring into your Wicket applications. This project builds on wicket-ioc, which is the
base project for DI support in Wicket.

 The project contains a factory for creating proxies. If we change the application
class to create proxies using the wicket-spring project, it looks like listing 13.3.

public class WicketInActionApplication extends WebApplication {

 private static ISpringContextLocator CTX_LOCATOR =
 new ISpringContextLocator() {
 public ApplicationContext getSpringContext() {
 return WicketInActionApplication.get().ctx;
 }
 };

 private ApplicationContext ctx;
 private DiscountsService discountsService;

 @Override
 protected void init() {
 ctx = new ClassPathXmlApplicationContext("applicationContext.xml");
 }

 private <T> T createProxy(Class<T> clazz) {
 return (T) LazyInitProxyFactory.createProxy(clazz,
 new SpringBeanLocator(clazz, CTX_LOCATOR));
 }

 public DiscountsService getDiscountService() {
 if (discountsService == null) {
 discountsService = createProxy(DiscountsService.class);
 }
 return discountsService;
 }

Note that the Spring context locator (which the proxy factory uses to get a reference
to the proper Spring application context object) is defined as a static member on the
application b. That is to ensure the context locator doesn’t reference the applica-
tion. If the locator was a regular object member instead, the Wicket application object
with all its settings would be serialized with every proxy instance.

 Creating a proxy object c is a relatively expensive operation, so it’s created lazily,
as you can see in the getDiscountsService method d. We don’t need to synchronize
the method; that would be much more expensive than creating a couple of proxies if

Listing 13.3 Creating proxies for Spring-managed objects

Static
context
locator

b

Use wicket-
spring’s proxy
factory

c

Create
proxy
lazily

d

309Layering Wicket applications using Spring
multiple clients called the method at the same time. The proxies are created only
once, whereas getDiscountsService will probably be called often; making it synchro-
nized would create a performance bottleneck.

 The proxy that is returned will only hold a reference to the class it was passed (Dis-
countsService.class in this case), and it will use that to locate the appropriate bean
when needed. If you’re familiar with functional programming, this may remind you of
keeping a reference to a function to get an instance, rather than keeping a reference
to that concrete instance. The advantage of using this proxy is that it’s cheap to serial-
ize, so you’ll never have to worry about keeping references to it in your components.

 Observant readers will have noticed that we’re still using the service locator pat-
tern. A problem with DI is that it’s contagious. Containers can only inject dependen-
cies they know about. This poses a problem for Wicket, because Wicket is what we call
an unmanaged framework. With Wicket, you create your own instances rather than let-
ting a container do it for you.

 You can imagine how different Wicket would look if we put the container in
charge of component instantiation. It wouldn’t support the just-Java programming
model we’re so proud of and worked so hard on (although Wicket would have been a
lot easier to implement). A declarative programming model—although useful on
some occasions—would seriously limit the freedom you have when coding Wicket
applications. Another way to look at this is that Wicket would be used in just one layer
of your application, and you wouldn’t need loose coupling for classes enclosed within
the presentation tier. A declarative approach would get in the way: you’re much better
off using the new keyword and writing clean, object-oriented Java code.

 There is an alternative that uses the service locator pattern under the covers but
feels like proper DI from the perspective of end users: Spring bean annotations. We’ll
look at how to use them in the next section.

13.2.5 Wicket’s Spring bean annotations

Annotations were introduced in the fifth major release of Java. They provide a way to
tag your source code with metadata. Such metadata is always processed by other
source code; it can’t contain algorithms.

 The SpringBean annotation is part of the wicket-spring-annot project in Wicket 1.3
and part of the main wicket-spring project in later Wicket versions. In this section, we’ll
look at how to use annotations and how to configure applications to be able to use them.

 Listing 13.4 shows the code of the discounts-list component after it’s converted to
use the Spring bean annotation.

public class DiscountsList extends Panel {
 @SpringBean
 private DiscountsService service;

 public DiscountsList(String id) {
 super(id);

Listing 13.4 Discounts list using the Spring bean annotation

310 CHAPTER 13 Multitiered architectures
 add(new RefreshingView("discounts") {
 @Override
 protected Iterator getItemModels() {
 return new DomainModelIteratorAdaptor<Discount>(service
 .findAllDiscounts().iterator()) {
 ...

The dependency isn’t completely externalized because you have to import org.apache.
wicket.spring.injection.annot.SpringBean; but because the annotation is only a
piece of metadata that by itself does nothing, it’s now safe to construct the component
and set dependencies in custom ways. Using the Spring bean annotation eliminates
the main problem with the service locator pattern: lack of freedom to change the way
dependencies are resolved for different cases.

 Using the Spring bean annotation also saves you from having to define those
lookup methods in the application—and, personally, we think it looks much nicer.

TIP Don’t initialize the members you annotate as Spring beans, because the
injector will run before the subclass initializes its fields. Doing private
DiscountsService service = null would override the created proxy
with null.

In listing 13.4, we use the Spring bean annotation as is. That results in a lookup using
the class of the member declaration (DiscountsService.class). Alternatively, you
can provide the name of the bean as it’s known by Spring (the id attribute in the con-
figuration file):

@SpringBean(name = "DiscountsService")
private DiscountsService service;

Using the name can be useful if you happen to have Spring manage multiple imple-
mentations of the member declaration interface; without the name, it would throw an
exception because the dependency is ambiguous.

 Installing the annotations processor to do something with those annotations is
easy. The wicket-spring-annot project ships with a special component instantiation lis-
tener that analyzes the components you construct and injects proxies for all the
Spring-bean-annotated members it finds. To install it, put the following line in your
application’s init method:

addComponentInstantiationListener(new SpringComponentInjector(this));

You also need to configure your application a bit differently. You can do so multiple
ways, but we’ll show you what we think is the nicest approach.

 First, instead of bootstrapping Spring yourself, let’s use a special servlet listener
that ships with Spring. To configure the listener, put the following lines in your
web.xml configuration file:

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

311Layering Wicket applications using Spring
This code bootstraps Spring when the servlet container starts up. By default, the con-
text loader listener tries to load the Spring configuration from your webapp directory.
It looks for a file named applicationContext.xml. We prefer to have Spring load our
configuration from the classpath as we’ve been doing in this chapter. You can achieve
this by adding these lines to your web.xml configuration:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:applicationContext.xml</param-value>
</context-param>

Spring will now start up when the servlet container starts and read its configuration
from the applicationContext.xml file it finds in the classpath root.

 The wicket-spring project also provides a Spring-specific implementation of the
web application factory interface (IWebApplicationFactory). You can use a custom
web-application factory if you want more control over how Wicket creates your appli-
cation object. Instead of providing a class, you provide the factory that will be in
charge of creating the application. The factory in wicket-spring is called SpringWeb-
ApplicationFactory. This factory doesn’t create an instance; rather, it asks Spring for
one. You can let Spring manage your application object and do all the fancy stuff (like
DI) with it that you might do with other Spring-managed components.

 To let Spring manage the application class, you define it as a bean in the Spring
configuration file:

 <bean id="wicketApplication"
 class="wicket.in.action.WicketInActionApplication">
 </bean>

Next, you need to tell the Wicket filter to use the Spring application factory to create
an instance of the application object. You do that by defining the filter as shown in list-
ing 13.5 (in web.xml).

<filter>
 <filter-name>WicketInAction</filter-name>
 <filter-class>
 org.apache.wicket.protocol.http.WicketFilter
 </filter-class>
 <init-param>
 <param-name>applicationFactoryClassName</param-name>
 <param-value>
 org.apache.wicket.spring.SpringWebApplicationFactory
 </param-value>
 </init-param>
</filter>

Optionally, you can provide an extra parameter that tells the Spring application fac-
tory the name of the application bean:

<init-param>
 <param-name>applicationBean</param-name>

Listing 13.5 Configuring Wicket filter to use the Spring application factory

312 CHAPTER 13 Multitiered architectures
 <param-value>wicketApplication</param-value>
</init-param>

The Spring application factory is smart enough to find the application class if there is
only one, so you don’t need to include this parameter.

 And you’re done! The application object is managed by Spring, and components
can use Spring-bean-annotated members.

 You may wonder about your models, behaviors, and other objects you use in the UI
layer that aren’t components. What we described in this section works only for compo-
nents. You’re likely to use Spring bean annotations in other objects as well, and the
next section takes a look at how to do that.

13.2.6 Using Spring bean annotations
with objects that aren’t Wicket components

When you use anonymous classes like we do in the discounts-list example, referring to
members of components works fine. But you’ll often want to create generic models
and behaviors, in which case you won’t want to reference specific components.

 As a workaround, you could fall back to the service locator pattern. For instance, list-
ing 13.6 shows how to properly get a handle to the Spring application context instance.

public class WicketInActionApplication extends WebApplication
 implements ApplicationContextAware {

 private ApplicationContext ctx;

 public void setApplicationContext(
 ApplicationContext applicationContext) throws BeansException {
 this.ctx = applicationContext;
 }

Spring does this for you because the class implements ApplicationContextAware
(which is a Spring interface) and the application object is managed by Spring. You
could then implement the getDiscountsService method as before.

 But wouldn’t it be nice to be able to use the Spring bean annotations as you did on
the components in the previous section? The answer is easy. Put this line in the con-
structor of any object for which you want Spring-bean-annotated members resolved:

InjectorHolder.getInjector().inject(this);

That’s it!
 You can create some neat classes using this pattern. For instance, listing 13.7 shows

the code for a generic model that loads domain objects. This model class is a good
example of how you can easily save a lot of duplication, and how to make your code
more readable and more strongly typed by generalizing your problem (which in this
case is the fact that you often want to load domain objects in models and detach the
models afterward).

Listing 13.6 Letting Spring set the application context instance

313Implementing the data tier using Hibernate
public class DomainObjectModel<T extends DomainObject>
 extends LoadableDetachableModel {

 @SpringBean
 private DiscountsService service;
 private final Class<T> type;
 private final Long id;

 public DomainObjectModel(Class<T> type, Long id) {
 InjectorHolder.getInjector().inject(this);
 this.type = type;
 this.id = id;
 }

 public DomainObjectModel(T domainObject) {
 super(domainObject);
 InjectorHolder.getInjector().inject(this);
 this.type = (Class<T>) domainObject.getClass();
 this.id = domainObject.getId();
 }

 @Override
 protected T load() {
 return service.load(type, id);
 }
}

Domain objects like Discount and Cheese need to implement the DomainObject
interface for this to work. That interface is defined as follows:

public interface DomainObject extends Serializable {

 Long getId();
}

That concludes our Spring adventures. In this chapter so far, you’ve seen that layering
software is a common way of keeping it manageable, and the three-tier service model
is a popular way of doing this. You’ve read that DI is a good way to keep the layers
loosely coupled. And you’ve worked through an example of setting up a layered appli-
cation using the Spring framework. This is the responsibility of the data access layer.
In the last part of this chapter, we’ll take a closer look at this.

13.3 Implementing the data tier using Hibernate
In this section, we’ll use Hibernate to implement the last tier of the multitiered appli-
cation: the data access layer. At the time of writing this book, Hibernate is probably
the most popular Java persistence framework, and many Wicket users (including us)
use it for their projects. The next sections introduce Hibernate and show you how to use
it with Wicket.

Listing 13.7 Generic model for loading domain objects

314 CHAPTER 13 Multitiered architectures
13.3.1 Introducing Hibernate

Hibernate tries to bridge the gap between object-oriented programming (OOP) and
the relational model that is used for relational databases (much like Wicket tries to
bridge the gap between OOP and the stateless HTTP protocol). Frameworks like
Hibernate are commonly called Object-Relational Mapping (ORM) frameworks.

 If you don’t use ORM tools, you’ll spend a lot of time writing code to create objects
from query results and translating object relationships to relationships that fit the
relational model. And to complicate things, those relationships are often each other’s
inversions, the relational model doesn’t have the concept of inheritance, and so on.

 Using Hibernate also shields you from the complexities of SQL. Although some
things are easier to do with SQL, querying complex relationships often is a lot harder
(even counterintuitive) with SQL than navigating through an object graph.

 Hibernate also does a good job of abstracting the details of particular databases.
Many databases have their own way of doing things, such as how unique keys are main-
tained and whether subqueries are supported. Hibernate abstracts these issues, which
enables you to switch databases without any effect on your code. You can even let
Hibernate generate the database schema if you want.

TIP The Manning books Hibernate Quickly (Patrick Peak and Nick Heudecker,
2005) and Java Persistence with Hibernate (Christian Bauer and Gavin King,
2006) are great resources for learning Hibernate.

Before you can use Hibernate with a Wicket application, you have to configure it, as
we’ll explain in the next section.

13.3.2 Configuring Hibernate
The first thing you do when you work with Hibernate is define your domain classes
and configure Hibernate to map them to database tables. Listing 13.8 shows how the
Discount class can be mapped using Hibernate’s annotation support.

@Entity
@Table(name = "discount")
public class Discount implements DomainObject {

 @Id
 @GeneratedValue
 private Long id;

 @ManyToOne
 private Cheese cheese;

 @Lob
 @Column(name = "description")
 private String description;

 @Column(name = "discount", nullable = false)
 private double discount;
 ...

Listing 13.8 Part of the Discount class with Hibernate annotations

315Implementing the data tier using Hibernate
The Entity annotation declares that the class is a persistent entity. The Id annotation
says that the member id is the primary key, and GeneratedValue instructs Hibernate
to generate unique values for every new object. Column annotations map regular col-
umns (the name attribute is optional), Lob annotations map binary large objects, and
ManyToOne annotations map relationships to other Hibernate-managed objects.

 Next, you use Spring’s Hibernate support to let Hibernate load and analyze
these classes:

<bean id="sessionFactory" class="org.springframework.orm.hibernate3.
annotation.AnnotationSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="annotatedClasses">
 <list>
 <value>dbdiscounts.domain.User</value>
 <value>dbdiscounts.domain.Cheese</value>
 <value>dbdiscounts.domain.Discount</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">${hibernate.dialect}</prop>
 </props>
 </property>
</bean>

This lets Spring construct a session factory using a data source that is defined else-
where in the configuration and a Hibernate dialect provided via a properties file or a
system property. The annotatedClasses argument is the list of classes you want Hiber-
nate to manage for you.

 Hibernate session factories produce Hibernate sessions, which function as the main
handle for users to load, save, and delete objects and create queries. These sessions also
function as a first-level cache so that dependencies can be resolved efficiently and so
that Hibernate can recognize which objects changed during a transaction.

 In the web.xml configuration file, you configure a filter that prepares a Hibernate
session for each request and cleans up that session after the request is done. Here is
what we put in web.xml:

<filter>
 <filter-name>opensessioninview</filter-name>
 <filter-class>
 org.springframework.orm.hibernate3.support.OpenSessionInViewFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>opensessioninview</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

There are alternatives to using a session per request, but for web applications, this is
the recommended approach as it keeps things simple.

316 CHAPTER 13 Multitiered architectures
TIP Always define the Hibernate session filter before the Wicket filter; doing
so results in the session filter being executed first (so the session is
opened before Wicket starts handling a request) and returned to after-
ward (so the session can be closed after Wicket is done with the request).

Finally, we’ll get to implementing DAOs using Hibernate in the next section.

13.3.3 Implementing data access objects using Hibernate

To avoid code duplication, you create a generified base class that handles the com-
mon things you want to do with Hibernate: loading, saving, and deleting. Listing 13.9
shows an interface that supports this.

public interface Dao<T extends DomainObject> {

 @Transactional
 void delete(T o);

 T load(long id);

 @Transactional
 void save(T o);

 List<T> findAll();

 int countAll();
}

The transaction annotations are a Spring construct to declare that a method should
run in the context of a transaction. For this to work, you need to configure a transac-
tion manager like this:

<bean id="transactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">
 <property name="sessionFactory" ref="sessionFactory" />
</bean>
 <tx:annotation-driven />

That’s enough to let Spring (2.0 and above) pick up these annotations and advise (a
term from Aspect Oriented Programming [AOP]) these methods to be transactional.

 To pair with the base interface, you create a base implementation, which is shown
in listing 13.10.

public abstract class AbstractHibernateDaoImpl<T extends DomainObject>
 implements Dao<T> {

 private Class<T> domainClass;
 private SessionFactory sf;

 public AbstractHibernateDaoImpl(Class<T> domainClass) {
 this.domainClass = domainClass;
 }

Listing 13.9 Base DAO with common operations

Listing 13.10 Hibernate DAO base class

317Implementing the data tier using Hibernate
 public SessionFactory getSessionFactory() { return sf; }

 public void setSessionFactory(SessionFactory sf) { this.sf = sf; }

 public void delete(T object) { getSession().delete(object); }

 public T load(long id) {
 return (T) getSession().get(domainClass, id);
 }

 public void save(T object) { getSession().saveOrUpdate(object); }

 public List<T> findAll() {
 Criteria criteria = getSession().createCriteria(domainClass);
 return (List<T>) criteria.list();
 }

 public int countAll() {
 Criteria criteria = getSession().createCriteria(domainClass);
 criteria.setProjection(Projections.rowCount());
 return (Integer) criteria.uniqueResult();
 }

 public Session getSession() { return sf.getCurrentSession(); }
}

The remaining code for implementing DAO classes is tiny (although it will grow once
you include more specific queries). We can define the discount DAO like this:

public interface DiscountDao extends Dao<Discount> { }

The implementation of the discount DAO is as follows:

public class DiscountDaoImpl extends
 AbstractHibernateDaoImpl<Discount> implements DiscountDao {

 public DiscountDaoImpl() {
 super(Discount.class);
 }
}

The services and DAOs are now ready to be used in the Wicket components.
 To finish this chapter, we’ll discuss a few common pitfalls you may encounter when

working with an ORM tool like Hibernate with Wicket.

13.3.4 Wicket/Hibernate pitfalls

A common pitfall when working with Wicket and Hibernate comes from the fact that
Hibernate sessions are designed for temporary use. Hibernate sessions use scarce
resources like database connections, and they should be closed after a unit of work is
done so the resources they use can be made available to other sessions.

 The easiest and often safest way of making sure sessions are available when you
need them—and are cleaned up properly when you’re done with them—is to use a
Hibernate filter, as shown in section 13.3.2. Such a filter opens a Hibernate session at
the start of a request and closes it when the request is done. To understand the prob-
lem, you have to know that Hibernate creates proxy objects (objects that act like the

318 CHAPTER 13 Multitiered architectures
objects they replace) when it returns instances of managed classes, and that those
proxy objects hold a reference to the session in which they were created. Such refer-
ences to the Hibernate session are used to resolve lazy collections, which are collections
(associations) that defer querying the database until they’re accessed. For example—a
collection on the many side of a one-to-many relationship can defer loading from the
database until accessed by client code. If you keep the objects around after a request
and try to use them in a subsequent request, you may run into the problem of your
objects trying to work with a closed session.

 The potential problem then is that Wicket objects, such as pages and models, that
can reference Hibernate managed objects can (and often do) live over multiple
requests. If you keep direct references to Hibernate objects, the session objects they
refer to will be stale after the first request! These sessions will be closed by the filter,
but the instances of the Hibernate managed objects have no way of knowing this. And
once the session is stale, Hibernate can’t use these sessions to load lazy collections and
will throw an exception when you tell it to do so.

 Another problem is one of efficiency. You know that Wicket handles state for you
and that it serializes components and all their references when saving components to
second-level cache or replicating them across the cluster. But typically the only thing
you need to know in order to load persistent objects is an identifier (or query) and
class so you can load them when needed. You don’t need to keep the complete
objects around.

 Yet another pitfall involves objects that come from resources like a database. These
objects can be updated by other clients between requests. Most web applications don’t
need real-time updates, but you generally want your information to be fresh at the
time the user requests the page.

 You read about the solution to these problems in chapter 4 on models. The solu-
tion is to work with detachable models. After a request, you let a model deflate the object
to its essence (typically the object’s identifier and class); when you need the whole
object again, you let the model inflate it by loading it from a Hibernate session.

 A final gotcha is the fact that Hibernate and some parts of Wicket depend on a
proper implementation of hashCode and equals. To illustrate a potential problem,
consider the following code fragment from DiscountsEditList:

public final class DiscountsEditList extends Panel {
 @SpringBean
 private DiscountsService service;
 private List<Discount> discounts;
 ...
 public DiscountsEditList(String id) {
 super(id);
 RefreshingView discountsView = new RefreshingView("discounts") {

 @Override
 protected Iterator getItemModels() {
 discounts = service.findAllDiscounts();
 return new DomainModelIteratorAdaptor<Discount>(discounts

319Summary
 .iterator()) {
 @Override
 protected IModel model(Object object) {
 return new HashcodeEnabledCompoundPropertyModel(
 (Discount) object);
 ...
 discountsView.setItemReuseStrategy(ReuseIfModelsEqualStrategy
 .getInstance());
 form.add(discountsView);
 }

RefreshingView throws away its child components at the start of each request to ensure
that the rows correctly reflect the data. Between requests (possibly as a result of the last
one), rows may have been swapped or deleted, and new rows may have been added.

 Throwing away child components works fine for read-only lists, but when you work
with forms, you don’t want the repeater to throw away the rows that are still logically
the same. This is particularly important for displaying errors and previous input (in
case of errors); feedback messages are stored keyed on the components they’re meant
for, but if they’re thrown away, Wicket won’t be able to locate them.

 The solution is to configure the repeater to follow a special item-reuse strategy: it
reuses its items when the models are equal. Of course, we aren’t interested in the
Wicket models, but rather in the objects they produce. We created a model that imple-
ments hashCode and equals by passing calls to the objects they represent:

 public int hashCode() {
 return Objects.hashCode(getObject());
 }
 public boolean equals(Object obj) {
 if (obj instanceof IModel) {
 return Objects.equal(getObject(), ((IModel) obj).getObject());
 }
 return false;
 }

And for that to work well, the domain objects must have their hashCode and equals meth-
ods properly implemented. This can be a tricky affair, and we refer you to the Hibernate
documentation to learn how to do it. Using the identifier to generate the hashCode and
to implement equals often works best for us, but it’s pretty much blasphemy in the eyes
of the Hibernate people. Again, read all about it in their documentation.

 If you want to be absolutely safe, you can consider using value objects, which are
(often simplified) beans that represent (parts of) their peer domain objects. Using
those enables you to keep the objects you use in the business and data access tiers sep-
arate from the ones you use in the UI tier. The disadvantage of using value objects is that
you end up with quite a bit of plumbing code, especially when passing data across layers.

13.4 Summary
This chapter gave you an overview of how to set up Spring and Hibernate to create a
multitiered architecture for your application. You can use Spring and Hibernate many

320 CHAPTER 13 Multitiered architectures
ways with Wicket, and there are countless alternatives for both frameworks (Guice,
PicoContainer, HiveMind, OSGi, JPA/EJB 3, Cayenne, iBATIS, plain JDBC, and so forth).

 Various projects specialize in making Wicket work better with databases. If you’re not
crazy about the multitiered approach (which would be understandable, because it
involves a lot of plumbing code), you can use ORM tools directly in the view layer, possi-
bly using one of the productivity-enhancement projects that support Wicket: for exam-
ple, Databinder (Hibernate-based RAD toolkit), WicketWebBeans (JavaBean editing
toolkit), Quickmodels (works with ODBMS db4o), Modelibra (domain-oriented RAD
environment), or Grails (Groovy-based RAD framework that has a Wicket module).

 In the next and final chapter, we’ll look at how to prepare your Wicket applications
for production.

Putting your application
into production
The goal of any web application is ultimately to make a profit. Some of you may be
familiar with the four-step Web 2.0 profitable business plan:

1 Build a web application.
2 Put the application into production.
3 …
4 Profit!

The previous chapters focused on the first step: how to build your application. You
learned about using and creating components, working with databases, processing
user input, securing your application, and attracting an international crowd.

 This chapter begins with step 2: preparing your application for production use
by testing it and by creating a site map that is optimized for your users and search

In this chapter:
■ Testing your web user interface
■ Providing pretty URLs for visitors and

search engines
■ Configuring your application for optimal

performance
■ Monitoring your application in production
321

322 CHAPTER 14 Putting your application into production
engines. With these tasks finished, you’ll be ready to hand over the application to your
users. Then, step 3 of the business plan starts. Most of step 3 is unknown territory, but
in this chapter we’ll give you several tools to keep your application healthy throughout
the endless hours of the process so you can arrive at step 4.

 Let’s first look at testing: ensuring that your application does what it was intended for.

14.1 Testing your Wicket application
In this section, you’ll learn how to create tests for your Wicket pages and components.
We assume that you’re familiar with unit testing, and we’ll use JUnit to build our
examples because it’s the de facto testing framework. We’ll use JUnit 4 annotation-
based testing, but nothing is holding you back from using the old tried and tested
JUnit 3.8.

 Using the WicketTester class, you can test-drive your application directly in unit
tests. The tester works directly on the server classes. This is in contrast to testing
frameworks such as JWebUnit, HtmlUnit, and Selenium; these frameworks work on
the protocol level by sending requests to a running web server. JWebUnit and Html-
Unit both stub the browser, whereas Selenium runs inside the browser.

NOTE The WicketTester discussed in this section will most likely be rewritten
when Wicket adopts Java 5 into its core. Using Java 5 enables us to use
annotations, static imports, and generics to create an API that is more
natural when building unit tests. Fortunately, the ideas in this section will
remain valid, although the APIs may be subject to change.

WicketTester is a helper class to test-drive your pages and components as if they were
called during a normal request. The big advantage compared to working at the proto-
col level is that you get full control over the pages and components. This way, you can
test a page or component in isolation and outside the servlet container, making the
tests run faster and under your control. To illustrate, we’ll start by unit-testing the exam-
ples from section 1.3 and then work our way through the front and checkout pages of
our cheese store from chapter 3.

14.1.1 Unit-testing Hello, World

The first example in section 1.3 was Hello, World! Let’s create a unit test for it. The
Hello World page contains a label that displays the Hello, World! text. The following
test shows how we can validate whether the label renders the expected text:

public class HelloWorldTest {
 @Test
 public void labelContainsHelloWorld() {
 WicketTester tester = new WicketTester();
 tester.startPage(HelloWorld.class);
 tester.assertLabel("message", "Hello, World!");
 }
}

323Testing your Wicket application
In this test, we want to determine whether our message label contains the famous
phrase. To test our page, we need to create a WicketTester and tell it to start the test
with our HelloWorld page. This renders the HelloWorld page and makes it available
for us to test with the tester. In this case, we assert that the label component with iden-
tifier message contains Hello, World!.

Let’s modify the Hello, World! example so it can work in an international setting.
Using resource bundles, we can provide translations for our label content. The next
snippet shows the modified page and a French resource bundle:

public HelloWorld() {
 add(new Label("message",
 new ResourceModel("greeting", "Hello, World!"));
}

File: HelloWorld_fr.properties
greeting=Bonjour tout le monde!

Navigating the component structure using compound Wicket identifiers
The first parameter to the assertXXX methods is the component path. The compo-
nent path uniquely identifies a Wicket component in the page’s component hierarchy.
In our first example, we have only one level of components to navigate.

Checking the value of a nested component requires you to provide the full component
path made up from each component’s identifier in the tree traversal to the particular
component. For example:

add(new ListView("cheeses", cheeses) {
 @Override
 protected void populateItems(ListItem item) {
 Cheese cheese = (Cheese)item.getModelObject();
 Link link = new Link("link") {...};
 link.add(new Label("name", cheese.getName()));
 }
});

To check the name of the first cheese, we have to use the following assert:

tester.assertLabel("cheeses:0:link:name", "edam");

The component identifiers are separated using colons to disambiguate component
path identifiers from property expressions. For instance, would person.name point to
a component with identifier name nested within a component with identifier person,
or to a label that uses person.name as its component identifier?

Referencing items inside repeaters such as a RepeatingView, ListView, or Data-
View requires the use of numbers inside the component path: these numbers are
used to identify the index of an item from a repeater. In the example, we retrieve the
first list item of the ListView named cheeses using the component path cheeses:0
(like lists in Java, repeaters start their indexes at zero).

324 CHAPTER 14 Putting your application into production
With our new internationalized example, we can now check whether the contents of
the label are correct in an international setting. The next snippet checks whether the
correct message is displayed for a French visitor:

@Test
public void labelContainsHelloWorldInFrench() {
 WicketTester tester = new WicketTester();
 tester.setupRequestAndResponse();
 tester.getWicketSession().setLocale(Locale.FRENCH);
 tester.startPage(HelloWorld.class);
 tester.assertLabel("message", "Bonjour tout le monde!");
}

To verify that our label generates the correct languages, we can switch the locale used
on the session. First, we need to set up the request cycle, which binds a session to our
tester b. This session is now valid until we invalidate it or the tester is cleaned up.
Next, we set the correct locale on our session c.

 Another technique for checking whether some text (inside components, or plain
markup) is present uses WicketTester’s assertContains method. This method takes
a regular expression and checks whether the contents of the page fit the expression.
For instance, the next example tests for both a Dutch and an English message:

tester.assertContains("H[ae]llo, (were|Wor)ld!");

Yet another way of testing the contents of a component is to test its model value, as
demonstrated in the next line of code:

tester.assertModelValue("message", "Hello, World!");

We can also test the contents of the rendered markup tags by using the TagTester, as
shown in the next snippet:

assertEquals("Hello, World!",
 tester.getTagById("message").getValue());

The getTagById method uses the DOM identifier to retrieve the tag from the ren-
dered document (similar to JavaScript’s document.getElementById). getTagById
returns a TagTester that works on the markup tags of the provided component. Using
the TagTester, we can check the tag’s attributes and the value between the tags. For
example, to test if a Link has a confirm script inside its onclick JavaScript handler, we
test it with the following line:

assertEquals("return confirm('Are you sure?');",
 tester.getTagById("link").getAttribute("onclick"));

We’re now able to test the contents of a page and our components. Let’s look at the
second example from section 1.3.2.

14.1.2 Having fun with link tests

Clicking a link invokes some kind of action on the server. Depending on the link, the
incoming request can be an Ajax request or a normal request. The link can render a
different page than the current one or perform an action in the onClick handler and

Initialize
tester

b
Switch to
French

c

325Testing your Wicket application
stay on the same page. Using the WicketTester, you can test the actions of clicking a
link using a normal or an Ajax request.

 The running example from section 1.3.2 introduced you to links. The example
shows a link that increases a counter on the page when clicked. A label shows the
value of the counter. The following code shows how to test a link:

@Test
public void countingLinkClickTest() {
 WicketTester tester = new WicketTester();
 tester.startPage(LinkCounter.class);
 tester.assertModelValue("label", 0);
 tester.clickLink("link");
 tester.assertModelValue("label", 1);
}

We start by setting up the tester and providing it with our starting page. The first thing
we check is whether the counter is zero b. Next, we click the link c and check
whether the value of the counter was increased d.

 In chapter 1, we also modified the link-counter example to use an AjaxFallback-
Link instead of a normal link to demonstrate Wicket’s Ajax capabilities. Let’s see how
to create a unit test that tests the counting AjaxFallbackLink example. To test the
fallback link thoroughly, we need to test the link using both an Ajax request and a nor-
mal fallback request. The next example tests both paths for the Ajax-enabled count-
ing link example:

@Test
public void countingAjaxFallbackLinkTest() {
 WicketTester tester = new WicketTester();
 tester.startPage(LinkCounter.class);
 tester.assertModelValue("label", 0);
 tester.clickLink("link", true);
 tester.assertComponentOnAjaxResponse("label");
 tester.assertModelValue("label", 1);
 tester.clickLink("link", false);
 tester.assertModelValue("label", 2);
}

The first link click b uses an Ajax request target. This mimics the scenario where a
browser has JavaScript enabled and is Ajax capable. We test whether the correct com-
ponents are updated in the request using assertComponentOnAjaxResponse c. To
make the test complete, we click the link again using a normal, non-Ajax request,
which exercises the fallback scenario d.
TESTING NAVIGATION

The previous examples stayed on the same page, but what happens when you click a
link that navigates to a new page? The next example shows a link that navigates to a
new page and an accompanying unit test to ensure the correct page was rendered:

public FirstPage() {
 add(new Link("link") {
 @Override
 public void onClick() {

Check start
value

b
Click linkc

Check new valued

Use Ajaxb Check label
update

c

Use fallbackd

326 CHAPTER 14 Putting your application into production
 setResponsePage(new SecondPage());
 }
 });
}

@Test
public void navigateToSecondPage() {
 WicketTester tester = new WicketTester();
 tester.startPage(new FirstPage());
 tester.clickLink("link");
 tester.assertRenderedPage(SecondPage.class);
}

The example starts with the FirstPage constructor. The page has a link that navigates
to SecondPage when it’s clicked. We could also have used a bookmarkable page link.
The test begins by creating FirstPage and then clicks the link. Finally, we assert that a
SecondPage was rendered.

NOTE If you know beforehand how the second page’s markup should look, and
you store it in a file, you can test the output of the request against the con-
tents of the file. A typical way of testing your application is to manually
inspect whether a page is rendered correctly and then save the markup to
a master template. This template is then compared to the output of the
same action in a unit test. If the output is different, the test fails. Although
this type of testing can be valuable, it’s brittle: the content should be
static, for example displaying a date in a label invalidates the output.

We’re now able to check the results of user interaction with links, but we aren’t done.
We haven’t touched on one of the most important parts of web-application develop-
ment: forms. Let’s look at the Echo application from section 1.3.3.

14.1.3 Testing the Wicket Echo application

In most applications, forms and form components provide the majority of user inter-
action. Most of the development time goes into perfecting this part of the application
using validations and type conversions, and providing feedback. Testing this part of
the user interaction is usually done manually because it’s hard to automate the test-
ing. Wicket’s FormTester provides the means to perform these tests automatically.
The FormTester lets you set values on text fields; select values in drop-down boxes,
check boxes, and radio buttons; and simulate uploading files to the form. To see the
FormTester in action, we’ll revisit the Echo example from section 1.3.3.

 The Echo application was your first encounter with form processing. It consists of a
form with a single field and a submit button. The contents of the field are echoed
using a label when the form is submitted. We can test this form by setting the value of
the field to some text and submitting the form. We can then check whether the label
contains the right value. The following code shows how:

@Test
public void echoForm() {
 WicketTester tester = new WicketTester();

327Testing your Wicket application
 tester.startPage(EchoPage.class);
 tester.assertLabel("message", "");
 FormTester formTester = tester.newFormTester("form");
 assertEquals("", formTester.getTextComponentValue("field"));
 formTester.setValue("field", "Echo message");
 formTester.submit("button");
 tester.assertLabel("message", "Echo message");
 assertEquals("", formTester.getTextComponentValue("field"));
}

We start with the EchoPage. Then, we check whether the contents of the message label
and text field are empty. Using the form tester, we set the value of the text field and
submit the form using the button. In the resulting page, we check whether the label
echoes our submitted string and whether the field has been cleared.

NOTE In Wicket 1.3, you can use a form tester instance for only one submit.
This limitation is due to be fixed in a later release.

The Echo application is simple in its form usage. Let’s look at a more complicated
example where we can check the functionality of validators and messages. In chapter 3,
we created the online cheese store with a checkout page. Let’s see how to test it.

14.1.4 Testing validators on Cheesr’s checkout page

The checkout page from section 3.3 contains a form that records customers’ address
information. The form consists of four fields: name, street, ZIP code, and city. We
made each field required to be sure we get all the necessary data from our customers.

 At the start of chapter 3, we created a custom session in which to store the shopping-
cart contents. The checkout page gets the shopping cart directly from the custom ses-
sion, so we need to ensure that our test can create the custom session and fill it with
our test values. Listing 14.1 shows a unit test for our checkout page that tests submit-
ting empty values.

@Test
public void checkoutTest() {
 WicketTester tester = new WicketTester(new CheesrApplication());
 tester.startPage(Checkout.class);

 FormTester formTester = tester.newFormTester("form");
 tester.assertNoErrorMessage();
 tester.assertNoInfoMessage();
 formTester.submit("order");
 tester.assertRenderedPage(Checkout.class);
 tester.assertErrorMessages(new String[] {
 "Field 'name' is required.",
 "Field 'street' is required.",
 "Field 'zipcode' is required.",
 "Field 'city' is required." });
}

Listing 14.1 Testing the checkout page with empty values

Provide
CheesrSession b

No messages yetc

328 CHAPTER 14 Putting your application into production
We provide the WicketTester with our custom Application object b, because the
application is responsible for creating the session (see chapter 2). Next, we tell the tester
to render the Checkout page. Because we haven’t done anything with the form yet, we
can be sure that at this moment there are no error messages c. When we submit the
form using the Order button, we expect the checkout page to be rendered again and
to contain several error messages: one for each missing input.

 Because the default locale is English, the messages returned are in English. To test
whether the messages are rendered correctly in a different locale, we need to change
the session locale. Listing 14.2 tests the same page using the Dutch locale.

@Test
public void checkoutDutch() {
 WicketTester tester = new WicketTester(new CheesrApplication());
 tester.setupRequestAndResponse();
 tester.getWicketSession().setLocale(new Locale("nl"));
 tester.startPage(Checkout.class);

 FormTester formTester = tester.newFormTester("form");
 tester.assertNoErrorMessage();
 tester.assertNoInfoMessage();
 formTester.submit("order");
 tester.assertRenderedPage(Checkout.class);
 tester.assertErrorMessages(new String[] {
 "veld 'name' is verplicht.",
 "veld 'street' is verplicht.",
 "veld 'zipcode' is verplicht.",
 "veld 'city' is verplicht." });
}

To make this test work, we need to bind the session first b before setting the locale c;
otherwise, Wicket will create a new session object, and the first request will negate our
efforts. The rest of the test is similar to listing 14.1, but the messages have been translated.

 Until now, we’ve tested entire pages—but what if you have a custom component
and want to test it directly without creating a Christmas tree covered with bells and
whistles? Let’s explore testing a custom component directly by using the shopping-
cart panel from chapter 3.

14.1.5 Testing a panel directly with the ShoppingCartPanel
One of Wicket’s strengths is the ability to create custom components quickly. In chap-
ter 7, you learned that panels provide the best way to quickly create custom components.

 In chapter 3, we refactored two pages (the home page and the checkout page) and
extracted the shopping-cart functionality into a panel: ShoppingCartPanel. The panel
has a list of all selected items, and each item has a link to remove it from the cart. The
panel also sports a label showing the total amount due.

 The first test determines whether we can display an empty shopping cart:

@Test
public void emptyShoppingCartPanel() {

Listing 14.2 Testing the checkout page using a different locale

Bind sessionb

Switch to
Dutchc

329Testing your Wicket application
 WicketTester tester = new WicketTester();
 final Cart cart = new Cart();
 tester.startPanel(new TestPanelSource(){
 public Panel getTestPanel(String panelId) {
 return new ShoppingCartPanel(panelId, cart);
 }});

 tester.assertListView("panel:cart", Collections.EMPTY_LIST);
 tester.assertLabel("panel:total", "$0.00");
}

The test begins by creating an empty shopping cart. Next, we provide our panel for
the WicketTester b. We have to use a factory for the panel because the tester adds
the panel to a test page internally. It must set the component identifier, and that can
happen only once (at the component’s construction time). The TestPanelSource fac-
tory enables us to lazily create the shopping-cart panel and pass on the provided com-
ponent identifier and our shopping cart. The value of the component identifier is
panel—we’ll need it when testing the panel’s components.

 When we’ve set up the test, we can assert that the cart renders an empty list view
and that the total amount is $0.00. Note that we prefix the component paths with
panel:, because the list view and the Total label are children of the panel, and the
panel is added to the test page using the component identifier value panel.

 Now that we have the first test in place, let’s look at testing the Remove links; see list-
ing 14.3. To test them, we need to add items to the cart first—otherwise they aren’t rendered.

@Test
public void filledShoppingCartPanel() {
 final Cart cart = new Cart();
 Cheese gouda = new Cheese("Gouda", "Gouda", 1.99);
 Cheese edam = new Cheese("Edam", "Edam", 2.99);
 cart.getCheeses().add(gouda);
 cart.getCheeses().add(edam);

 tester.startPanel(new TestPanelSource() {
 public Panel getTestPanel(String panelId) {
 return new ShoppingCartPanel(panelId, cart);
 }
 });

 tester.assertListView("panel:cart", Arrays.asList(gouda, edam));
 tester.assertLabel("panel:total", "$4.98");
 tester.assertLabel("panel:cart:0:name", "Gouda");

 tester.clickLink("panel:cart:0:remove");

 tester.assertListView("panel:cart", Arrays.asList(edam));
 tester.assertLabel("panel:total", "$2.99");
 tester.assertLabel("panel:cart:0:name", "Edam");
}

In this test, we first add two cheeses to the cart: Gouda and Edam cheese. Next, we set
up the test and provide the panel under test with the shopping cart containing the

Listing 14.3 Testing links inside a list view on a panel

Delay
panel
creation

b

Remove Gouda
cheese

b

330 CHAPTER 14 Putting your application into production
cheeses. Now we’re ready to test the panel: we determine the current contents by
checking the list view and the total value of the cart, and then we remove the Gouda
cheese from the cart by clicking its Remove link b. Finally, we can check whether the
only remaining cheese is Edam and that the total amount is $2.99.

 With all this testing, we’re confident that our application works as advertised. This
implies that we’re ready to go into production. But we need to consider one more
thing: a site map with a good URL layout, so search engines and visitors can navigate
your website with ease.

14.2 Optimizing URLs for search engines and visitors
When you have a public website, you probably want to ensure that it’s search-engine
friendly and that the URLs used on the public pages are easy for visitors to remember.
The default URL-generation strategy may not be to your liking, so Wicket provides sev-
eral approaches that will keep search engines and visitors happy.

14.2.1 Bookmarkable requests vs. session-relative requests
One of the great inventions of the last millennium was the search engine. It’s never
been easier to get access to naughty pictures interesting information than it has been
since the invention of the search engine. Search engines drive traffic to websites, and
our cheese store needs visitors in order to return a profit.

 The front page of the cheese store shows short descriptions of the cheeses in our
inventory. We want to show more information on a detail page for each cheese, such
as the region of origin, how it’s made, which wine goes well with it, and more about
the ingredients. On the front page, we’ll add a link to this details page with each dis-
played cheese.
SESSION-RELATIVE REQUESTS

Armed with our knowledge of links, we add the following snippet to each of our front-
page items:

item.add(new Link("details", item.getModel()) {
 @Override
 public void onClick() {
 Cheese cheese = (Cheese)getModelObject();
 setResponsePage(new CheeseDetailsPage(cheese));
 }
});

This example adds a link to the list item and uses the item’s model to gain access to
the selected cheese in the onClick event handler. This cheese is passed to the
CheeseDetailsPage, which is rendered to the browser. To see the effect of this imple-
mentation, we need to look at the generated URL:

http://cheesr.com/shop?wicket:interface=:0:details1::ILinkListener::

When visitors share the URL with their friends, they’ll receive a page-expired error
because they’re trying to directly access the page instead of coming through the shop
front. The problem with this URL is that it relies on a previous request to the server:

331Optimizing URLs for search engines and visitors
the request that generated the list of cheeses. Search engines could store this link
information—but then search results would be useless.

 To make this work, the server needs to know which link points to which cheese.
The URL doesn’t provide enough information to make it work without any prior
knowledge. Using this way of linking is known as using session-relative URLs. The URL
depends on the history of the session, which makes it relative for the session.

 These URLs provide some resilience against cross-site-request-forgery attacks. When
all navigation in your application is done through session-relative requests, it’s diffi-
cult (although not impossible!) to forge a request to trigger a specific action in
your application.

BOOKMARKABLE REQUESTS

We can also create links to the details pages by using the bookmarkable links and
encoding everything we need into the request’s URL. The advantage is clear: you can
bookmark this item in your browser and go directly to that specific place in your appli-
cation. The following snippet shows how to add such a link:

Encrypting your URLs
If you’re concerned about cross-site-request forgery, you may want to encrypt each
URL that Wicket generates. CryptedUrlWebRequestCodingStrategy provides the
means: it uses a two-way encryption facility to obscure each generated URL. You can
configure this strategy by overriding the newRequestCycleProcessor on your
Application class, as shown in the following example:

@Override
protected IRequestCycleProcessor newRequestCycleProcessor() {
 return new WebRequestCycleProcessor() {
 @Override
 protected IRequestCodingStrategy newRequestCodingStrategy() {
 return new CryptedUrlWebRequestCodingStrategy(
 new WebRequestCodingStrategy());
 }
 };
}

Using this code, Wicket will encrypt all your URLs—including bookmarkable URLs.
This strategy uses the encryption facility that is configured in the security set-
tings—see ISecuritySettings’ getCryptFactory and setCryptFactory meth-
ods. By default, Wicket uses the Sun JCE encryption facilities. When these aren’t
available (for example, if you deploy on a JVM that doesn’t ship with the Sun JCE
classes), Wicket defaults to no encryption. In this case, you must provide your own
crypt factory.

Note that you should modify the default encryption key that is stored in the ISecu-
ritySettings to prevent malicious hackers from using the default publicly available
key as an attack vector.

encrypt
URLs

332 CHAPTER 14 Putting your application into production
PageParameters pars = new PageParameters();
pars.add("cheese", cheese.getName());

add(new BookmarkablePageLink("show", CheeseDetailsPage.class, pars));

In this example, we externalize all necessary information by putting it in the page
parameters, and give that information (here, the name of the cheese) to the link.
Wicket generates the appropriate URL that targets the correct page and encodes the
parameters. The resulting URL becomes

http://cheesr.com/shop?wicket:bookmarkablePage=
 %3Acom.cheesr.shop.CheeseDetailsPage&cheese=edam

This URL provides our application with the essential data: the target page and the
name of the cheese. These types of URLs can be shared among users and used in pro-
motional emails; and when search engines store them, they work instead of showing
users an expiration error.

 But this bookmarkable URL isn’t something people will remember easily. It’s also
likely to result in error messages when we rename the page class or move it to another
package (because the fully qualified classname is encoded in the URL). Let’s look at
how to make this URL prettier.

14.2.2 Extreme URL makeover: mounting and URL encodings

In the previous section, we showed you a Wicket URL for a bookmarkable page, as it’s
generated by default. The default URL looks ugly, even to someone who normally
doesn’t care about URLs. Although few users look at the address field in the browser
to see where they are, creating nice-looking URLs has merit. They give structure to
your site, and they make linking to your website easier. Even search engines favor
URLs with paths instead of query parameters. So, having clean URLs for your website
will attract more users.

 You can change the way Wicket generates these URLs for you with mounting and
URL encoding. Let’s first look at mounting.
MOUNTING YOUR PAGES

In the previous section, you saw that the default URL for bookmarkable pages contains
the fully qualified classname for the page. This is less than ideal, because bookmark-
able pages are a public API to your application. When you move the page to another
package or rename the class, newly generated URLs will be modified—but all those
URLs stored in marketing emails, bookmarks from visitors, and (probably most impor-
tant) search-engine indexes will remain unchanged. When someone tries to visit your
site through one of those stored URLs, they will see a page-not-found error (also
known as the 404 HTTP status code).

 Wicket allows you to mount your bookmarkable pages to a specific path in your
application. Let’s look at an example that mounts the CheeseDetailsPage. Mounting
a page is typically done in the init method of the application object, as follows:

public class CheesrApplication extends WebApplication {
 @Override

333Optimizing URLs for search engines and visitors
 protected void init() {
 mountBookmarkablePage("cheeses", CheeseDetailsPage.class));
 }
}

This example mounts our cheese details page to the path cheeses. When we generate
the bookmarkable URL to the page, it now looks like this:

http://cheesr.com/cheeses/cheese/edam/

As you can see, this clears up the URL considerably. The cheeses part of the URL
points to the mount path for the details page. This way, Wicket will map the two.
The cheese part of the URL is the name of the parameter, and the edam part is the
value of the parameter.

 Even though this new URL looks a lot better than the previous incarnation, we can
alter it even further. For instance, the parameter name seems superfluous; removing it
gives us the following, more concise URL:

http://cheesr.com/cheeses/edam

Being able to generate such a tidy URL is great for both users and search engines.
Let’s look at options to modify URLs into a format you like.
THE PLASTIC SURGEON FOR URLS: URL ENCODING STRATEGIES

The default URL encoding used to generate our details URL uses the mount path and
encodes both the keys and values of parameters into the ultimate URL. But there are
many more ways to encode the same information by specifying a different URL
encoder for your mounted pages.

 Let’s look at the ways we can encode the URL for our details page. The next example
shows three URLs that point to the same page but are encoded using different strategies:

http://cheesr.com/cheeses?cheese=edam
http://cheesr.com/cheeses/cheese/edam
http://cheesr.com/cheeses/edam

The encoding is specified when we mount the page in the init method. The follow-
ing snippet generates the first URL:

mount(new QueryStringUrlEncodingStrategy("cheeses",
 CheeseDetailPage.class));

Table 14.1 shows a list of the standard URL formats with their respective encoding
strategies provided by Wicket.

Table 14.1 URL encodings provided by Wicket

URL Name

/cheeses?cheese=edam QueryStringUrlEncodingStrategy

/cheeses/cheese/edam BookmarkablePageRequestTargetUrlCodingStrategy

/cheeses/edam IndexedParamUrlCodingStrategy

334 CHAPTER 14 Putting your application into production
Let’s see what each encoding strategy can do for you.
QUERYSTRINGURLENCODINGSTRATEGY

This URL encoding is common in get requests where a query is sent to the server—
for instance, a Google search. The parameters are encoded in a key/value pair and
appended to the URL after a question mark. Multiple parameters are separated
by ampersands.

TIP Rumor has it that even though this is the “official” way of encoding your
URLs, search engines tend to like the other encoding strategies better.

Here’s an example of using this encoding strategy and the resulting URL:

mount(new QueryStringUrlCodingStrategy("cheeses",
 CheeseDetailsPage.class));

http://cheesr.com/cheeses?cheese=edam

When the CheeseDetailPage is created, Wicket invokes the constructor with PagePa-
rameters. We can retrieve the values of the parameters by asking for the right key, as
shown in the next example:

public CheeseDetailPage(PageParameters pars) {
 String name = pars.getString("cheese", "");
 ...
}

When we retrieve the value of the name parameter, we supply a default value. When
working with request parameters, you should always assume something is wrong—peo-
ple often modify parameters by hand and make (intentional) mistakes.
BOOKMARKABLEPAGEREQUESTTARGETURLCODINGSTRATEGY

Wicket uses this strategy as the default encoding for mounted pages. The parameters
are encoded as key/value pairs separated by forward slashes. This type of encoding is
currently popular for public-facing sites, probably because search engines seem to
prefer it. The previous section shows an example and the result of using this strategy.
INDEXEDPARAMURLCODINGSTRATEGY

The IndexedParamUrlCodingStrategy strategy encodes parameter values based on
index. You must put and retrieve the parameters by index. This strategy is currently
the most popular for encoding URLs in web applications. Encoding your URLs in this
way is also known as RESTful encoding.

/cheeses/edam/?age=33 MixedParamUrlCodingStrategy

/cheeses/name/edam HybridUrlCodingStrategy

/cheeses/edam IndexedHybridUrlCodingStrategy

Table 14.1 URL encodings provided by Wicket (continued)

URL Name

335Optimizing URLs for search engines and visitors
 The following example shows how to mount a page and how to create a bookmark-
able link for our details page:

mount(new IndexedParamUrlCodingStrategy("cheeses",
 CheeseDetailsPage.class));

add(new BookmarkablePage("details",
 CheeseDetailsPage.class, new PageParameters("0=edam")));

Using this strategy has an influence on how you put and get the values for page parame-
ters. When you build your pages using the default strategy, all your bookmarkable pages
retrieve their values based on a name/value pair. When you switch to the indexed strat-
egy, you must change all affected pages to retrieve the values based on their index. For-
tunately, Wicket provides has a mixed encoding strategy that solves this problem.
MIXEDPARAMURLCODINGSTRATEGY

MixedParamUrlCodingStrategy encodes parameters in a combination of indexed-
based and query=string encoding. Any parameter key that isn’t specified at mount time
is encoded as a query string in the final URL. Applying this strategy to a page mount is
shown here:

mount(new MixedParamUrlCodingStrategy("cheeses",
 CheeseDetailsPage.class, new String[]{"name"}));

The string array tells the strategy which parameter key needs to be mapped to which
index. Any parameter key that isn’t listed in this array is encoded using the query-
string encoding. For example, this could lead to the following URL:

http://cheesr.com/cheeses/edam?color=blue&age=34

In this example, the color and age parameters are query-string encoded.
THE HYBRID URL-ENCODING STRATEGIES

The hybrid URL-encoding strategies from table 14.1 are the same as their nonhybrid
variants, but they provide one additional feature. We’ll discuss this shortly and use
HybridUrlCodingStrategy as an example (IndexedHybridUrlCodingStrategy is sim-
ilar in this respect).

 When a bookmarkable URL is sent to the server, Wicket creates a new page
instance for the requested page. When the page contains Ajax components, they
update the page state by adding, replacing, or removing components. This works flaw-
lessly until the user decides to refresh the page in the browser. Doing so sends the
original, bookmarkable URL to the server, causing Wicket to create a new instance of
the page and losing the component modifications.

 The hybrid strategy redirects the browser after the first request to a URL that con-
tains the page number (and Ajax version when necessary), as follows:

http://cheesr.com/shop/cheeses.4

This link is the shop’s front page after the user has added items to the cart or browsed
the catalogue using an Ajax navigator. The URL consists of two parts: the bookmarkable
part (http://cheesr.com/shop/cheeses) and a state part (.4). When the user refreshes

336 CHAPTER 14 Putting your application into production
the page, Wicket notices the state part and returns the page instance that is already
available instead of creating a new instance. When the user shares this link with some-
one else, Wicket ignores the state part and creates a new instance of the page.

 Pretty URLs clearly make it easier for users to navigate your site. They also provide
search engines with crawlable URLs that can be stored in their indexes and shown in
search-result pages, driving new customers to your site. As search engines deliver more
visitors, it’s important to have your site running with optimal performance. Using the
right configuration can save precious milliseconds for each request and make the user
experience snappier. You’ll learn how to tune Wicket for production in the next section.

14.3 Configuring your application for production
When you’re building an application, Wicket provides useful tools for discovering and
troubleshooting errors. One example is the detailed exception-reporting page, which
is helpful for developers—but that would scare the living daylights out of your end
users. There are other developer-friendly features that you may want to switch off
when your application goes live, as we’ll discuss later in this section.

14.3.1 Switching to deployment mode for optimal performance

While you’re developing your application, you can use Wicket’s tools to discover
potential problems early on. This helps you diagnose and solve those problems before
they become an issue for users. But the diagnostic tools come at a price: each check
takes resources (time, memory, and CPU power).

 Wicket applications can run in two modes:

1 Development —Maximum developer support
2 Deployment —Maximum performance and security for production

By default, Wicket starts in development mode. You’re advised to switch to deployment
mode for all production systems. You can see in the logs whether Wicket was started in
development or deployment mode, as shown in the following snippet from a log file
(the format may be different depending on your logging configuration):

INFO - WebApplication - [WicketInActionApplication] Started Wicket
 version 1.3.0 in development mode
**
*** WARNING: Wicket is running in DEVELOPMENT mode. ***
*** ^^^^^^^^^^^ ***
*** Do NOT deploy to your live server(s) without changing this. ***
*** See Application#getConfigurationType() for more information. ***
**

As you can see, Wicket clearly warns against using development mode in live systems.
If you start the server in deployment mode, Wicket logs the following lines (you’ll
learn how to switch to deployment mode in a minute):

INFO - WebApplication - [WicketInActionApplication] Started Wicket
 version 1.3.0 in deployment mode

337Configuring your application for production
Note that the big warning is missing and the info line shows deployment mode. How you
can switch between these two modes?
SWITCHING WICKET BETWEEN DEVELOPMENT AND DEPLOYMENT MODE

There are three levels at which you can configure the mode in which an application is
started. The following list shows them in order of priority:

1 Through a system property
2 Through a servlet/filter-initialization parameter
3 Through a context-initialization parameter

The system property is provided on the command line to the JVM. For production
servers, this is probably the best way to ensure that your application is always started in
deployment mode. Depending on your server, you need to configure this in the
startup script or in an administration console that controls your server’s startup
parameters. The other two options are available in the web.xml deployment descrip-
tor for your web application. Table 14.2 lists the configuration parameters and how
you can set them.

You now know how to switch applications to a different mode, but let’s take a closer
look at why you want to perform the switch. First we’ll discuss configuration of devel-
opment mode, and then deployment mode.
CONFIGURATION FOR DEVELOPMENT MODE

When your application runs in development mode, it’s configured for optimum devel-
oper support. The following list describes what is done to help developers solve prob-
lems and to make development a lot easier:

■ All resources are monitored for modifications and reloaded when modified.
■ Wicket checks whether all components added to the Java component hierarchy

are rendered.

Table 14.2 Configuring Wicket for development or production use

Method Example

System property java -Dwicket.configuration=deployment

Servlet/filter init <filter>

 ... filter-name and filter-class ...

 <init-param>

 <param-name>configuration</param-name>

 <param-value>deployment</param-value>

 </init-param>

</filter>

Context init <context-param>

 <param-name>configuration</param-name>

 <param-value>deployment</param-value>

</context-param>

338 CHAPTER 14 Putting your application into production
■ Wicket leaves all Wicket tags in the rendered markup that is sent to the client.
■ Unexpected exceptions are shown in a page showing the full stack trace.
■ Pages containing Ajax components show the Wicket Ajax Debugger (shown in

figure 14.1).
■ Wicket doesn’t strip comments and whitespace from JavaScript files (also

known as minifying).
■ Wicket doesn’t compress static text resources such as JavaScript and CSS files.

For example, reloading resources when they’re modified means that developers have
to restart applications less often, saving valuable time. Leaving the Wicket tags in the
markup makes it easier to determine what markup comes from which component.

These developer-friendly options come at a price: they take time during request pro-
cessing, use more bandwidth than necessary, and expose the nitty-gritty details of your
application to your users.
CONFIGURATION FOR DEPLOYMENT MODE

Running your application in deployment mode does the opposite of the configura-
tion settings used in development mode, as evidenced in the following list:

■ The resource-modification watcher is turned off.
■ Wicket ignores components added to the component hierarchy but not in

the markup.
■ All Wicket tags are stripped from the rendered markup that is sent to the client.
■ An unexpected exception results in an error page with only a link to the home

page (see figure 14.2).

Figure 14.1 Wicket’s Ajax Debugger is available in development mode and shows
requests going from browser to server.

339Configuring your application for production
■ The Ajax debugger is turned off.
■ Whitespace and comments are stripped from JavaScript files
■ Static text resources (such as JavaScript and CSS files located on the classpath)

are also compressed using gzip when supported by the client browser.

These settings tune Wicket for better performance and save some bandwidth by mini-
mizing JavaScript and sending it compressed. When your users visit a page with Ajax
components, they aren’t presented with the Ajax Debugger.
MODIFYING THE DEFAULT CONFIGURATION

The defaults presented by Wicket are sane. But sometimes you want to be able to mod-
ify markup and other resources at runtime on your production box. You have to modify
Wicket’s configuration to achieve this.

TIP If you’re modifying your application’s configuration for use in produc-
tion, always start tweaking the deployment mode. This way, you’ll begin
with the best settings for a production environment.

You can modify the configuration in the Application’s init method. Don’t do this in
the Application’s constructor, because the Application object hasn’t been com-
pletely constructed and configured yet. If you modify the settings in the constructor,
Wicket will override them with the defaults when it configures your Application
object using the configuration parameter.

 The next example shows how to configure Wicket to scan for changes in markup
files in development mode:

public CheesrApplication extends WebApplication {
 @Override
 public void init() {
 if(DEPLOYMENT.equalsIgnoreCase(getConfigurationType()) {

Development mode Deployment mode

Figure 14.2 Development mode shows stack traces; deployment mode shows only a link to the
home page.

340 CHAPTER 14 Putting your application into production
 IResourceSettings resourceSettings = getResourceSettings();
 resourceSettings.setResourcePollFrequency(Duration.ONE_MINUTE);
 }
 }
}

This example checks the configuration type before tinkering with the resource set-
tings. The resource-poll frequency tells Wicket to scan for changes in each resource
(properties, JavaScript, or HTML files, for example) that is cached. If the underlying
file is modified, Wicket discards the cached copy and reads the new version.

 Wicket has many settings—too many to discuss in this book. To make modifying
and understanding the settings easier, they’ve been grouped into categories. Table 14.3
lists the interface of each category. You can obtain the settings for each category by
stripping the I from the interface name and using the remaining name for the getter.
For example, to get at IRequestCycleSettings, you should use the getRequestCycle-
Settings method.

 In deployment mode, Wicket shows users a Spartan error page instead of a page
with a cryptic error message containing a stack trace. Even though some of your users
may enjoy puzzling over a Java stack trace, it’s not customary to show users the guts of

Table 14.3 Configuration settings

Category Description

IApplicationSettings Specifies error pages, the class resolver, and the default maximum
upload size.

IDebugSettings Enables the Ajax Debugger, line-precise error reporting, and a
component-use check.

IExceptionSettings Specifies what to do with an unexpected exception
(see section 14.3.2).

IFrameworkSettings Stores the Wicket version.

IMarkupSettings Specifies before/after disabled links, autolinking, markup encoding,
markup stripping, and XML declaration checking.

IPageSettings Specifies the component resolver, automatic multiwindow detection,
and default page versioning.

IRequestCycleSettings Specifies the render strategy, timeout, response filters, response
buffering, and extended client info.

IRequestLoggerSettings Enables requestlogger, records session sizes, and keeps the
last N requests (see section 14.4.1).

IResourceSettings Specifies gzip compression, resource filters, folders, the watcher,
and the localizer.

ISecuritySettings Specifies the authorization strategy, unauthorized component instan-
tiation listener, cookie persister, and encryption for URLs.

ISessionSettings Contains settings specific to the HttpSessionStore.

341Configuring your application for production
an application. The default deployment error page (right screenshot in figure 14.1)
probably doesn’t fit with the overall design of your application—there is no feedback
about what went wrong and no information that might help users solve the problem.
Let’s look at improving your image and providing visitors with better error pages.

14.3.2 Providing meaningful error pages

An error page is shown when something unexpected occurs—for instance, when a
database connection is lost, or a web service that always works starts returning unfore-
seen messages, or a coworker forgot to check for null when they called your function.
These are exceptional occurrences; no matter how comprehensively you test, such
things will occur at one time or another in production use. A helpful and friendly
error page keeps users informed and may help you solve the problem.

 Figure 14.2 showed two screenshots of different error pages: one with a formatted
stack trace aimed at developers, and one generic error page aimed at end users.
Although the end-user page looks nice (ahem), you may want to provide your own
styling or add some functionality. Figure 14.3 shows an alternative error page for our
cheese store; it looks much better than the standard page from figure 14.2.

Figure 14.3 An alternative error page for the Cheesr store. It provides a link back
to the cheese store and an optional form to receive feedback from the user who
encountered the problem.

342 CHAPTER 14 Putting your application into production
There are various ways to implement your own error page. For example, you can
generate a support ticket automatically in your bug-tracker system, ask the user for
additional feedback, and provide avenues to let users return to work. Note that the
bug-tracking system can go down and not all users are capable of providing meaning-
ful feedback, which we learned the hard way.

The error page isn’t the only page you can customize. Here’s a list of all the pages for
which you can (and should) provide custom implementations:

■ Access-denied page —Shown when a request is denied due to a security constraint
■ Internal-error page —Shown when an unexpected error occurs
■ Page-expired error page —Shown for a request in an expired session

We discussed creating pages earlier in this book, and creating an error page is no dif-
ferent from creating a normal page. We therefore leave building error pages as an
exercise for you.

Instead, you’ll learn how to configure Wicket to use your custom page instead of the
default one.

User comments: You get what you ask for
In one of our systems, we provided a special error page asking users for comments
about what they were doing before the error occurred. This system was relatively new
and was experiencing growth while we added more functionality. Our application was
going through growing pains, which triggered serious stability problems and resulted
in users seeing the error page quite often. During this period we learned that having
a fax number on your support page, and locating the fax machine directly under our
alarm system's motion sensor, is not recommended. We also learned having a feed-
back form on your error page is a great way to enlarge your cursing vocabulary.

Setting an HTTP status code
If you want to set an HTTP status code for your page, such as 404 (not found), you
can do so by overriding the page’s setHeaders method:

@Override
protected void setHeaders(WebResponse response) {
 response.getHttpServletResponse().setStatus(
 HttpServletResponse.SC_NOT_FOUND);
 super.setHeaders(response);
}

Alternatively, you can throw an AbortWithWebErrorCodeException and provide it
with the appropriate error code and an optional message.

343Configuring your application for production
SETTING CUSTOM ERROR PAGES

The three custom error pages can be set in the init method of your Application
using the application settings. Here’s an example:

@Override
protected void init() {
 IApplicationSettings settings = getApplicationSettings();
 settings.setAccessDeniedPage(CheesrAccessDeniedPage.class);
 settings.setPageExpiredErrorPage(CheesrPageExpiredErrorPage.class);
 settings.setInternalErrorPage(CheesrInternalErrorPage.class);
}

In our Cheesr application, we set the three error pages to our custom pages in the
init method. These settings tell Wicket to show users our customized, friendlier
error pages.

 The internal error page is mostly meant for exceptions you don’t expect; it’s a one-
size-fits-all solution. But sometimes you can expect exceptions—for instance, a remote
service that is temporarily unavailable. Normally, you should handle such exceptions
locally by retrying, redirecting to another page, or using Wicket’s feedback mecha-
nism to notify the user of the failure. You can also let the request cycle catch the
exception and respond with a different error page for a specific error.
RESPONDING WITH DIFFERENT ERROR PAGES FOR SPECIFIC ERRORS

The settings we described don’t provide a way to act on a particular exception. Fortu-
nately, the request cycle gives you that ability. The next example shows a custom request
cycle that acts on a particular exception and uses the defaults for all other exceptions:

public class CheesrRequestCycle extends WebRequestCycle {
 public CheesrRequestCycle(WebApplication application,
 WebRequest request, Response response) {
 super(application, request, response);
 }

 @Override
 public Page onRuntimeException(Page page, RuntimeException e) {
 Throwable cause = e;
 if(cause instanceof WicketRuntimeException)
 cause = cause.getCause();
 if(cause instanceof InvocationTargetException)
 cause = cause.getCause();

 if (cause instanceof OutOfCheeseException) {
 return new CheesrErrorPage();
 }
 return super.onRuntimeException(page, e);
 }
}

This request cycle’s onRuntimeException is called when an uncaught exception occurs
during request processing. The request cycle provides the page on which the error
occurred and the caught exception. The caught exception is wrapped in a WicketRun-
timeException, and its cause is the exception that occurred. If the exception occurs in
an event handler (for example, onClick or onSubmit), the exception is wrapped in an

Get
cause

344 CHAPTER 14 Putting your application into production
InvocationTargetException. To get at the root exception, we need to traverse that
tree before we can decide how to handle the exception. Our example defaults to the
usual behavior when the exception isn’t OutOfCheeseException.

 In this section, you’ve learned how to configure your application so it runs opti-
mally for production. You learned how to provide users with meaningful error pages
and possibly get valuable comments from them. Now it’s time to take the plunge and
start making a profit. Before you fire up your servers and harvest your fortune, we’ll
look at how you can ensure your servers are healthy.

14.4 Knowing what is happening in your application
Once your application is running on your server and delivering pages to visitors, you
need to ensure that the application keeps running. This means monitoring the appli-
cation and, when things go wrong, figuring out what happened and how to fix it.

 Being able to retrace a user’s session and follow the requests until the point of fail-
ure is invaluable. The request logger provides this information. But you don’t just
want to react to failures—if possible, you want to prevent them by tuning or modifying
parameters. Wicket’s JMX support allows you to monitor and tweak runtime settings.
Let’s start with the logger.

14.4.1 Logging requests with RequestLogger

A user just called: the application showed our carefully crafted custom error page, and
the user dialed our support number. We wrote down the time the error page was
shown, what the user tried to achieve, and the user’s email address to get back in
touch when the problem is solved or if we need more information.

 We fire up a terminal window, log on to the production server, and go to the direc-
tory where the log files are written. We open the application’s log file and go to the
time of the error. Sure enough: a null pointer exception occurred. We open the offend-
ing line in our IDE and see the problem: there is no null check in place. Before we
adjust the code, we need to make sure we can reproduce the problem in our develop-
ment environment. We can then apply a fix and see if that solves the problem.

 To trace the user’s steps, we open the HTTP logs on our server and try to find out
what the user clicked. This is what the logs shows:

14:00:18 192.0.2.10 "POST /vocus/app?wicket:interface=:4:lijst::IBehavi
14:00:19 192.0.2.50 "GET /vocus/app/resources/wicket.ajax.AbstractDefau
14:00:19 192.0.2.120 "GET /vocus/app?wicket:interface=:12:medewerkers:1
14:00:20 192.0.2.126 "POST /vocus/app?wicket:interface=:1084:filterform

The log includes a lot of information but not much that is particularly useful. We
don’t know which request belongs to the user (the HTTP server is oblivious to the ses-
sion); even if we logged the session identifier, we wouldn’t know which one was the
user’s. And the URLs in the log are mostly like the following:

POST /vocus/app?wicket:interface=:1084:filterform::IFormSubmitListener
GET /vocus/app?wicket:interface=:1084::

345Knowing what is happening in your application
With this information, we can’t determine which page is involved in the request, and
it’s hard to find out what went on. Fortunately, Wicket provides a special logging facil-
ity that enables us to log the information we need: the request logger. Let’s first look
at what the request logger provides. The following log line (it’s all logged in one line)
comes from the same production system:

 14:00:19 time=101,
 event=Interface[
 target:DefaultMenuLink(menu:personalia:dropitems:relatiesLink),
 page: nl.topicus.vocus.web.gui.student.ToonPersonaliaPage(4),
 interface: ILinkListener.onLinkClicked],
 response=PageRequest[
 nl.topicus.vocus.web.gui.student.ToonLeerlingRelatiesPage(6)],
 sessioninfo=[
 sessionId=D574D35FF49C047EF4F290FE59EB7DA4,
 clientInfo=ClientProperties: {
 remoteAddress=192.0.2.50,
 browserVersionMajor=7,
 browserInternetExplorer=true},
 organization=Vocus Demo School,
 username=Demo User],
 sessionsize=-1,
 sessionstart=Fri Dec 14 13:59:14 CET 2007,
 requests=14,
 totaltime=3314,
 activerequests=2,
 maxmem=2390M,
 total=2390M,
 used=1760M

This log also contains a lot of information: the time of the request, the duration of the
request (101 milliseconds), and what triggered the request. Apparently, this request was
a click on a link in a menu with the component path menu:personalia:dropitems:
relatiesLink; the menu is part of ToonPersonaliaPage. The response target is also
logged (fortunately, because exceptions also occur during rendering!); in this case,
the application renders ToonLeerlingRelatiesPage.

 The request logger also keeps track of the active sessions and keeps information
about the session in a special store. The logger records the session ID, the start time
of the session, the number of requests for this particular user, and the total amount of
server time used in processing. Recording the session size is optional: it uses serializa-
tion to calculate the size of the session, so it can be an expensive metric to track. In
our example, the user has fired 14 requests to our server, which took a total of 3.3 sec-
onds on the server.

 The request logger provides a way to add application-specific information to the
log: in this example, we added client info and the organization and username. This
lets us track the requests performed during a session and play back the events in our
development environment.

346 CHAPTER 14 Putting your application into production
ENABLING THE REQUEST LOGGER IN YOUR APPLICATION

Now that you know what the request logger can do for you, let’s discuss how to enable
it. The next snippet shows how to do so:

Application.get().getRequestLoggerSettings()
 .setRequestLoggerEnabled(true)

You can enable it during application startup or toggle it using a link or check-box
component in an administration page.

 The next step is to configure the logger. By default, it keeps track of the last 2,000
requests for programmatic access. You can show the last X requests in an admin inter-
face, or calculate the throughput of your server based on this information. You can
change the number of stored requests in the RequestLogger settings:

Application.get().getRequestLoggerSettings().setRequestsWindowSize(10);

Next, you need to ensure that the request logger is able to write its information to a
log file. This is done through your application’s log configuration—which is specific
to the logging facility you use. Because log4j is popular, we’ll show an example config-
uration from our log4j.properties file to enable the request logger:

log4j.rootLogger=INFO,Stdout
log4j.category.org.apache.wicket.protocol.http.RequestLogger=INFO
log4j.appender.Stdout=org.apache.log4j.ConsoleAppender
log4j.appender.Stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.Stdout.layout.conversionPattern=%d %-5p - %-26.26c{1} - %m\n

Typically, you’ll log the request-logger information to a separate daily log file and pro-
cess it offline. Consult your logging facility’s manual for the specific configuration.

 If you want to log specific information pertaining to your application, you need to
let your session implement the ISessionLogInfo interface. This interface requires
the one to be implemented: getSessionInfo. This method can return any object. The
request logger logs the toString value of this object. The following example shows
how to return the name of the user associated with the session:

public class MySession extends WebSession implements ISessionLogInfo {
 private User user;

 public MySession(Request request) {
 }

 public Object getSessionInfo() {
 return "user=" + (user == null ? "n/a" : user.getFullname());
 }
 public void setUser(User user) {
 this.user = user;
 }
 public User getUser() {
 return user;
 }
}

347Knowing what is happening in your application
Finally, you can get programmatic access to the request logger to show this data in an
administration console for your application. The following example shows how to
gain access to the live sessions recorded by the request logger:

IRequestLogger requestLogger = Application.get().getRequestLogger();
List<SessionData> sessions = requestLogger == null ?
 Collections.EMPTY_LIST
 : Arrays.asList(requestLogger.getLiveSessions());
for(Session session : sessions) {
 System.out.println("Session id: " + session.getSessionId());
}

This example lists the currently active session IDs. Much more information is at your
disposal, and we encourage you to investigate the API.

 The request logger has given us valuable insight into the workings of our applica-
tions and is an invaluable debugging tool when a nasty bug needs solving. Although
having log files helps you go back in history, you may need to take more immediate
action and modify a parameter in a running application.

14.4.2 Using JMX to work under the hood while driving

We’ve run our application in deployment mode, enabled the request logger, had all
our unit tests pass, and implemented a nice URL scheme for search engines to
explore. The server is humming in the rack, and our users are being served. Then,
someone from the marketing department calls and tells us about a few spelling errors
on the pages. We don’t panic; we fire up a terminal, log on to the production server,
and fix the markup files. We refresh the offending page in our browser and … noth-
ing changes.

 Running an application in deployment mode has some advantages, and one of
them is that the markup files are cached and Wicket doesn’t scan for changes to save
precious CPU cycles and IO bandwidth. But now this feature is getting in the way of us
updating our site. One way of forcing Wicket to reload the markup is to restart the
application. This is usually a bad idea for production servers. Keeping a minor change
until the next service window is just as bad. If only there were a way to clear the
markup cache.

 Java Management Extensions (JMX) provide a way to look inside a running server
and adjust parameters on the fly. Wicket provides a special module that you can
include in your project and that exposes some of Wicket’s internals using Managed
Beans (MBeans). Using Java’s JConsole or your application server’s management con-
sole, you can peek at Wicket’s settings and modify the values. In this section, we’ll look
at configuring your application to expose the application’s configuration through
JMX and using JConsole to clear the cache, forcing Wicket to reload the markup once
and fix the spelling errors.
ENABLING JMX IN YOUR APPLICATION

The first step is to add the wicket-jmx jar to your project’s classpath and have it pack-
aged in the war file. If you’re running Jetty as your servlet container, you’ll need to

348 CHAPTER 14 Putting your application into production
enable the management facilities by adding the jetty-management dependency to the
project. Instructions for other containers and application servers should be available
in their respective documentation.

 When you’re running the embedded Jetty server, you still need to perform two
steps before you can fire up JConsole. First, add the lines in listing 14.4 to the Start
class’s main method before starting the servlet container.

public static void main(String[] args) throws Exception {
 Server server = new Server();
 SocketConnector connector = new SocketConnector();

 connector.setMaxIdleTime(1000 * 60 * 60);
 connector.setSoLingerTime(-1);
 connector.setPort(8080);
 server.setConnectors(new Connector[] { connector });

 WebAppContext bb = new WebAppContext();
 bb.setServer(server);
 bb.setContextPath("/");
 bb.setWar("src/main/webapp");

 MBeanServer mBeanServer=ManagementFactory.getPlatformMBeanServer();
 MBeanContainer mBeanContainer = new MBeanContainer(mBeanServer);
 server.getContainer().addEventListener(mBeanContainer);
 mBeanContainer.start();

 server.addHandler(bb);

 try {
 System.out.println(
 "STARTING JETTY SERVER, PRESS ANY KEY TO STOP");
 server.start();
 while (System.in.available() == 0) {
 Thread.sleep(5000);
 }
 server.stop();
 server.join();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(100);
 }
}

If you use Wicket’s quickstart project, all you need to do is uncomment these four
lines b because they’re already available. These lines register Jetty’s management
bean container with Java’s bean server. The remainder of the example starts the serv-
let container and waits for a keypress to stop the server.

 As a final step before you can connect JConsole, add the following system property
to the Java command line used to start your server (see your IDE or server startup
script for more information about how to achieve this):

-Dcom.sun.management.jmxremote

Listing 14.4 Enabling JMX in an embedded Jetty container

Set timeout options to
make debugging easier

Start JMX
server b

349Knowing what is happening in your application
This property configures Java to expose all the registered management beans to a con-
sole. Firing up JConsole gives you access to the Wicket management beans. Figure 14.4
shows the beans that are available for the examples.

 Now, if you want to clear the markup cache, you need to navigate in your manage-
ment console to the Application MBean and go to the Operations tab. There you’ll
find a button to clear the markup cache, forcing Wicket to reload its markup files.
EXPOSING YOUR OWN CONFIGURATION AND PARAMETERS THROUGH JMX
Creating your own MBeans isn’t difficult. It can be beneficial from an operations point of
view to expose settings such as MBeans and have the application’s and all other services’
information available in one management console. Creating MBeans is beyond the scope
of this book, but fortunately the excellent book JMX in Action (Manning: Benjamin Sul-
lins and Mark Whipple, 2002) is at your disposal to learn more about this topic.

 Getting a view of the internals of your application while it’s running is helpful.
Wicket isn’t the only product that provides the ability to view and modify settings using
JMX. For example, Hibernate and Ehcache provide MBeans to peek under the hood, so
enabling JMX will allow you to control much of your application while driving.

Figure 14.4 Java’s JConsole provides access to the exposed MBeans in your application. Using these
MBeans, you can modify the application and request logger settings. The MBeans also provide the
ability to stop and start the request logger and to clear the markup cache.

350 CHAPTER 14 Putting your application into production
14.5 Summary
All the tools and methods we described in this chapter will help you launch a success-
ful product. Using the Wicket tester, you can ensure that your code works correctly
before you show it to customers. By mounting your pages using the right URL encod-
ing, you’ll help visitors navigate quickly to the page they need. Having the correct URL
encoding also enables search engines to index your site and provide meaningful links
to your products. We looked at configuring applications to optimize developer pro-
ductivity and with a flick of a switch make the application run in production mode.

 Custom error pages ensure that the inevitable errors fit into your site’s design and
don’t stand out like the default Wicket error page. When errors occur, having diagnos-
tic tools at your disposal is indispensable. The request logger provides a way to keep
track of what users do with your application and lets you play back what a user did to
trigger a bug. With Wicket’s JMX support, you can look at and modify operational
parameters to ensure a healthy running application.

 With this chapter, we’ve reached the end of this book. Over the course of these
pages, you’ve learned how to build applications using Wicket components, validate user
input, create custom components, and build secure applications for a global audience.

 The most important advice we want to give you is the following: when you find
yourself lost while building an application, remember that you’re working with just
Java and HTML. If you find something that Wicket doesn’t provide out of the box, it’s
not hard to extend a component, behavior, or model that provides a good starting
point on which to build your customization. If you still have problems, consult this
book and the accompanying examples project, or other online resources such as the
Wicket examples, the wiki, or the user mailing list. You’ll find a welcoming community
eager to provide help and support.

 Now, put down this book and start working on your killer Wicket application: this
is the final item we leave as an exercise for you.

index
Symbols

<head> 179
<property> 306
@Override 14

Numerics

404 error code 342

A

a href 113
AbortWithWebErrorCode-

Exception 342
AbstractAjaxBehavior 245, 250,

260
AbstractDefaultAjaxBehavior

245, 255
AbstractReadOnlyModel 249
AbstractTree 248
AbstractValidator 165

onValidate() 165
resourceKey() 166

access-denied page 342
action 280

form tag 142
active session 347
addComponent() 244, 253
addComponentInstantiation-

Listener() 276
advise 316
Ajax 19, 239–247

advantages of using behav-
iors 258

behaviors 245–247
components 243–245
debug window 242
Debugger 338, 340
disadvantages 241
DOM id attribute 244
engine 242–243
engine, third-party 258–261
example 240
focus form component 160
gotchas 262–263
in-place editing 251
JavaScript event handlers

245
request/response cycle 240
requirements for repainting

components 244
sending request asynchro-

nously 122
support in Wicket 242
swapping 195
updating components 253
URLs 335
visibility 132, 177

AjaxCheckBox 156, 243
AjaxEditableLabel 243, 254
AjaxEventBehavior 255
AjaxFallbackLink 19, 177, 325

Ajax and non-Ajax requests
19

onClick() 20
usage 123
vs. AjaxLink 122

AjaxFormComponentUpdating-
Behavior 246

AjaxFormSubmitBehavior 246

AjaxFormValidatingBehavior
246

AjaxLink 243–244
submit form 159
vs. AjaxFallbackLink 122

AjaxRequestTarget 20, 123, 244,
253, 256

focusComponent() 160
AjaxSelfUpdatingTimer-

Behavior 246
AjaxSubmitButton 243, 246
AjaxSubmitLink 159, 243, 246
alternative feedback message

167
annotatedClasses 315
annotation 279, 309

processor 310
anonymous

inner class 14
subclass 18

Ant 45
AOP 316
Apache

Struts 5
Velocity 12–13

API 27, 200
appendJavascript() 245, 256
application 25–26, 270

configuring for production
336–344

feedback override 166
home page 272
init() 49, 333, 339
monitoring 344–349
mountBookmarkablePage()

333
351

INDEX352
application (continued)
multithreading 46
newConverterLocator()

297
scope 229
testing 322–330
Wicket, layering with Spring

304–313
Application Programmer Inter-

face. See API
applicationContext.xml 311
ApplicationContextAware 312
architectural pattern 300
ASCII 290
Aspect Oriented Programming.

See AOP
assertComponentOnAjax-

Response() 325
assertContains() 324
assertErrorMessages() 328
assertLabel() 322
assertListView() 329
assertModelValue() 324
assertNoErrorMessage() 328
assertNoInfoMessage() 328
assertRenderedPage() 326
associated markup 35–36
Asynchronous JavaScript and

XML. See Ajax
attribute modifier 134
AttributeModifier 43, 147

usage 134
authentication 269–274

example 270–272
authorization 132, 274–280

actions 279
strategy 274–276

AutoCompleteTextField 244
auto-component 286
auto-detecting child compo-

nents 190
auto-link 119, 179, 226, 251

B

back button 10
base page 187
bean 306
behavior 134

listener 44
binding to form components

90–91
blockquote 175
bookmark, creating 195
bookmarkability 193

bookmarkable
page 117
session-relative URL 335
URL 331
vs. session-relative requests

330–332
BookmarkableLink

example 272
BookmarkablePageLink 115

example 116
BookmarkablePageRequest-

TargetUrlCodingStrategy
334

boolean form component
155

bootstrapping Spring 310
border 171
bot 232
browser, caching 229
BrowserInfoPage 261
browsing history 27
buffer, redirect to 143
Burbeck, Steve 39
business

layer 301, 305
logic 300
tier 300

button
back 10
forward 10
internationalization 157
internationalizing text 157
markup 22, 68
onSubmit() 23
radio 151
setDefaultFormProcessing()

161
usage 70

bypassing form processing 161

C

cache 101
Captcha 232–236
Carnegie Mellon 232
cascading style sheets. See CSS
central feedback message 166
chain of models 102
change

locale 324, 328
requirements 5
submit method 142
tag 134

CheckBox 155
CheckBoxMultipleChoice 153

cheese store
adding the address form 67–

72
adding the buttons 70
adding the Check Out but-

ton 62
adding the shopping cart 58–

62, 64
adding the text fields 69–70
class diagram 47
creating a common layout

51–53
creating a reusable shopping

cart 74–78
creating the checkout page

66–78
creating the home page 53–

66
designing the UI 51
displaying feedback 73
displaying the cheeses 54–58
hiding the Check Out button

63
implementing the applica-

tion 48–49
implementing the base page

50–51
implementing the session 49–

50
introduction 46–53
making the form fields

required 72–73
setting up shop 46

choice in a list 150
ChoiceRenderer 154, 285
cleaning up markup 136–137
clickLink 325, 329
cluster 88, 97
code

duplication, avoiding 200,
278

hard-coded 303
maintainability 83

collection, large 130
Column annotation 315
comma-separated values. See CSV
common layout 183
Compagner, Johan 5
Component 33

error() 170
getModelObject() 89
getModelObjectAsString() 89
getString() 170
info() 170
isVisible() 63, 131

INDEX 353
Component (continued)
onComponentTag() 133
setOutputMarkupId() 21, 124
setOutputMarkupPlace-

HolderTag() 177
setOutputMarkup-

PlaceholderTag() 132
setRedirect() 142
setRenderBodyOnly() 136
setResponsePage() 63
setVisible() 131, 176
warn() 170

component
common tasks with 130–137
compound 199, 204–206
compound input 209–213
compound, synchronizing

models 211
configuring 203
creating custom, with factory

methods 210
creating your own 74
custom 177
date-time 208–213
definition 107–109
domain-specific 213
examples 32
extending with behaviors 42–

44
generic 199
grouping 174, 177–183
grouping using a Fragment

182–183
grouping using a Panel 178–

182
grouping using a WebMarkup-

Container 175–178
hiding 63, 176, 278, 280
hiding/showing 131
hierarchy 174
identifier 16, 94, 323
identifier in markup and Java

16
identifier names 92
instantiation listener 275,

310
introduction 31–44
Java 33–34
list of 106
and markup 35
nested 39, 93, 174, 208
no grouping 174
page 34–35
path 35, 323, 329
previewing 206

programmatically disabling
278

replacing 181, 261–262
gotchas 215

requiring parameters 11
reusable 177, 199, 234–236,

258–262
reusable component 74
reusable custom 201–202
self-contained 224–226, 259
setEscapeModelStrings() 112
showing 63, 131
that selects current locate

200–208
triad 32–33, 108
use check 337
visibility 132
Wicket identifier vs. DOM

identifier 19
wrapping around child

markup 189–191
component hierarchy 109, 176,

187
matching with markup struc-

ture 37–38
modifying 181

component structure, navigating
with compound Wicket
identifiers 323

ComponentFeedbackMessage-
Filter 171

ComponentTag 206
compound identifiers 323
CompoundPropertyModel 92–

96, 110
description 84
example 217
usage 93

CompoundProperty-
Model:bind 95

compression 338–339
concrete implementation 302
conditional markup 63, 131

using Ajax 177
configuration 143, 337

of container 302
custom error pages 341–344
for deployment mode 338
for development mode 337
default, modifying 339–341
developement vs. deployment

mode 336–341
parameters 337

confirm 135
link 134

consistent layout
best way 193–195
bookmarkability 195
duplication 194
markup inheritance 187–

191
navigation 195
panels 191–193
plain pages 184–187
previewability 193–194

container 137, 294
ContainerFeedbackMessage-

Filter 171
context locator 308
continueToOriginalDestination

272
controller description 6
convention over configuration

38
conversation defined 25
conversion 110

customizing 295–298
localized 293–298
mechanism 83
overriding for an application

297–298
overriding for one component

296–297
using converters 294
using models 293

converter 221, 293–295
configuring 283
custom 295–298
locator 297
resource key 163

ConverterLocator 298
converting 61

input 144
convertInput() 211
convertToObject() 296
convertToString() 295–296
cookies, storing values in 148
copy/paste programming 185,

194
preventing 177

covariance 270
cross-site scripting. See XSS
cross-site-request forgery 331
CryptedUrlWebRequestCoding-

Strategy 268, 331
CSS 238, 250

declaring dependencies 247
file location 52
use in cheese store 51

CSV 224, 226

INDEX354
custom
application 328
component 177
request cycle 343
resource loading 291–293
resource locator 292
session 328
validator 165

D

DAO 26, 99, 300
implementing with Hiber-

nate 316–317
data access layer 305, 313
data access object. See DAO
data tier, implementing with

Hibernate 313–319
database table, mapping domain

class to 314
database, abstracting details with

Hibernate 314
Databinder 320
DataTable 130
DataView 130
date 293
date-time component 208–213
declarative programming model

309
decode request 30
default feedback message 167
dependency injection. See DI
deployment descriptor 337
deployment mode 336

configuration 338
design pattern, template

method 255
designer versus programmer 53
detachable model 318
detaching 96
determine request target 30
development mode 336

configuration 337
DHTML 238
DI 301, 303–304

code without 302–303
implementation 304
open source frameworks 303
Spring support for 305

Direct Web Remoting. See DWR
display text 16
doctype declaration 291
document object model. See

DOM
Dojo 21, 242, 258

DOM 19, 239, 244
domain class, defining 314
domain model 300
domain object 305

loading 312
DomainObject 313
domain-specific language. See

DSL
Don’t Repeat Yourself. See DRY
DropDownChoice 151

example 202–204
DRY 39, 64, 178
DSL 32, 38
duplication 193

reducing 183
duration of request 345
Dutch 287
DWR 242
dynamic model 61

vs. static 86–88
dynamic text 109
DynamicImageResource

example 233
DynamicWebResource 230

E

Echo 5
Eclipse 56, 74, 225
effect, Web 2.0 124
Ehcache 349
EJB container 302
email address validator 164
emailing URLs to Wicket page

115
empty fields, preventing 144
empty input 144
EmptyPanel 181
encapsulation 178, 181
enclosure 132
encoding parameters 116
encryption key

default 331
Entity annotation 315
EqualPasswordInputValidator

164
equals 219, 319
error message, registering 165
error page

custom 341–344
for specific errors 343

error() 169
ErrorLevelFeedbackMessage-

Filter 171
escape model strings 112

escaped unicode 286
escaping 116
event listener 71
example

adding to shopping cart using
Ajax 123

advanced search check box
155

Ajax behavior 247
Ajax comment form 159
Ajax component 246
AjaxFallbackLink 19
BookmarkableLink 272
BookmarkablePageLink 116
changing style with Attribute-

Modifier 134
clock, dynamic 87
clock, static 86
CompoundPropertyModel 93
confirmation link 134
counting Ajax link 19–21
counting link 18–19
custom request target 29
custom session 27
custom validator Divisible-

Validator 165
date format label 202
detachable cheese model 98
echo application 21–23
generating a menu with

ListView 128
generating a menu with

RepeatingView 126
get all cheeses with Loadable-

DetachabeModel 100
having fun with links 17–21
Hello World 15–17
Label 36
Link 201, 279
loadable cheese model 101
locale drop-down menu 202–

204
locale Reset link 207–208
menu 185
Model workaround for serial-

ization 89
modifying attributes in

onComponentTag 133
nesting a LoadableCheese-

Model in a PropertyModel
103

nesting PropertyModels 104
omelette du fromage 174, 180
Page 270
PageParameters 117, 272

INDEX 355
example (continued)
PasswordTextField 270
PropertyModel 273
protecting pages 276
refreshing a ListView with

LoadableDetachable-
Model 128

RestartResponseAtIntercept-
PageException 272

reusable required text field
202

reusable ShoppingCartPanel
75

StatelessForm 270
TextField 201, 270
URL converter 296
using Ajax component 244

example markup 55, 194
exception

aborting, class hierarchy 277
cause of 343
logging 88, 98
showing in stack trace 338
uncaught 343

exploit 113
external link 115
ExternalLink

usage 114

F

factory method, creating cus-
tom components 254, 256

failed validation 165
failover 88
favorite links 115
FCKeditor 149
feedback filtering 171
feedback message 73

alternative 167
central 166
default 167
standard 166, 169
substituting a variable 166

FeedbackPanel
example 252
markup 73, 171
usage 73

Fielding, Roy T. 9
file location 15, 55
filter 317

configuring 315
filtering feedback message 171
final classes and methods 259
Firebug 243

Firefox 243
first-level cache 315
flash message 169
Flickr 239
focus form component 160
focusComponent() 160, 256
forCss() 248
forJavaScript() 248
form

binding 90–91
check box for boolean proper-

ties 155–157
client-side form processing

141–143
components for submitting

forms 157–162
components for text input

145–149
converting user input 163
custom validators 165
displaying messages using a

FeedbackPanel 170–171
form processing 141–145
getMethod() 142
input processing 23
mapping an object to a choice

using ChoiceRenderer
153–154

markup 22, 68
multiline text with TextArea

148–149
onError() 141, 145
onSubmit() 141, 145
onSubmit() vs. button

onSubmit() 158
processing 144
protecting text with Password-

TextField 147–148
providing feedback 166–171
providing non-validation-

related messages 169–170
required validation 162–

163
selecting a single value 149–

152
selecting from a list of items

149–157
selecting multiple values 152–

153
server-side form processing

144–145
server-side processing 69
single-line text with TextField

146–147
skip processing 70

standard feedback messages
166, 169

standard validators 163–164
submit form with buttons

157–158
submitting form with Ajax

links 159–161
submitting form with links

158–159
submitting form without pro-

cessing 161–162
submitting using get 142
submitting using post 142
submitting using redirect after

post 143
usage 69, 140
validating user input 162–166
what are forms? 140–141

form component
AjaxSubmitLink 159
Button 157
CheckBox 155
CheckBoxMultipleChoice 153
CheckGroup 153
DropDownChoice 151
embedding 209–211
ListChoice 150
ListMultipleChoice 152
PasswordTextField 147
RadioChoice 151
SubmitLink 158
TextArea 148
TextField 146

form fields, setRequired() 72
form processing 209, 212

bypassing 161
formatted text 111–112
FormComponent

setPersistent() 148
setRequired() 162

FormComponentFeedback-
Border 171

FormComponentPanel 209
FormTester

setValue() 326
submit() 326
testing forms automatically

326
forward button 10
Fowler, Martin 301
Fragment 182–183

creating 182
markup 182
tags 182
usage 182

INDEX356
Frame 34
functional programming 14,

309

G

Garfield 96
Garret, Jesse James 239
general-purpose language 38
GeneratedValue annotation 315
generating markup id 21
generic model 104
get form submission 142
getCallbackUrl() 245
getChainedModel() 103
getConverter() 202, 221, 296
getConverterMethod() 253
getCryptFactory() 331
getItemModels() 217
getListItemModel() 130
getModelObject() 42
getModelObjectAsString() 295
getObject() 41–42
getParent() 218
getResourceStream() 227
getResponse() 250
getSessionInfo() 346
getString() 170
getTagById() 324
getting active session 347
getting input from users 140
Google Maps 239
Google Suggest 239, 244
Grails 320
grouping components 174–183

no grouping 174
using a Fragment 182–183
using a Panel 178–182
using a WebMarkup-

Container 175–178
Guice 303
gzip 339

H

hard-coded 303
hashCode() 219, 319
head 180
header contributions 247–251

behaviors 248
performing with package

resources 259
using templates 249

HeaderContributor 248

Hello World 15
Hibernate 10, 39, 300

abstracting database details
314

configuring 314–316
filters 317
implementing DAOs 316–317
implementing data tier with

313–319
introducing 314
MBeans 349
pitfalls 317
session 315

hiding
component 63, 131
part of page 131–132
with Ajax 132

HiveMind 303
Hollywood Principle 301
HTML

change tag 134
disabled input fields 279
file location 15, 55
form 140
img tag 224
in model 112
select tag 206

HtmlUnit 322
HTTP log 344
HTTP session 88
HTTP status code 342
HttpSession 10, 27, 49
HttpSessionStore 340
HybridUrlCodingStrategy 335

I

i18n 17, 282–283
IApplicationSettings 340
IAuthorizationStrategy 274,

277
IBehavior 258
IBehaviorListener 44, 245, 258,

260
IChainingModel 103
IChoiceRenderer 154
IComponentInstantiation-

Listener 276
IConverter 202, 294
IConverterLocator 298
Id annotation 315
id attribute 19
IDE 5, 32

configuring 225
IDebugSettings 340

identifier 108
IDetachable 41, 97
IDetachable:detach 97
IExceptionSettings 340
IFrameworkSettings 340
IHeaderContributor 245, 249,

258
IHeaderResponse 249
IInitializer 230
ILinkListener 30
Image

example 225, 233
setImageResource() 233

IMarkupSettings 340
IModel 41, 83, 134, 217

generic models 104
setObject() 145, 207

IModel:detach() 97
IModel:getObject() 83
IModel:setObject() 83
impedance mismatch 5, 10
imperative programming 14
implementation details

hiding 202
import 15
IndexedHybridUrlCoding-

Strategy 335
IndexedParamUrlCoding-

Strategy 334
indirection 33

using in custom components
255

info() 169
inheritable model 93, 95
init 333, 339
initializer 230–231
injecting JavaScript 113
InjectorHolder 312
inline panel 182
input

conversion 144
converting 163
empty 144
getting from users 140
required 144
retaining and skipping pro-

cessing 161
validating 162–166
validation 145

integrated development envi-
ronment. See IDE

interception URL 272
interface 302
internal-error page 342
internationalization. See i18n

INDEX 357
internationalizing button text
157

Internet Explorer 262
maximum URL length 117

interpolating a variable 166
invalidateNow 274
inversion of control. See IoC
InvocationTargetException 344
IoC 301
IPageSettings 340
IRequestCycleProcessor 231
IRequestCycleSettings 143, 340
IRequestListener 71
IRequestLoggerSettings 340
IResourceFinder 293
IResourceListener 228
IResourceSettings 340
IResourceStreamLocator 291
isActionAuthorized() 279
ISecuritySettings 331, 340
ISessionLogInfo 346
ISessionSettings 340
isInstantiationAuthorized()

277
ISO 8859-1 286
isTransparentResolver() 189
isValid() 213
isVisible() 63, 131, 278
IUnauthorizedComponent-

InstantiationListener 277
IValidatable 234
IValidationError 166
IValidator 74, 165
IWebApplicationFactory 311

J

J2EE 39, 305
JAAS 281
Java 5 annotation 14
Java Authentication and Autho-

rization Service. See JAAS
Java component 33–34
Java Development Kit. See JDK
Java Enterprise Edition. See J2EE
Java Management Extensions.

See JMX
Java Persistence API. See JPA
Java Virtual Machine. See JVM
Javadoc 32
JavaScript 238

as Ajax enabler 239
declaring dependencies 247
injection 113
stripping comments 338

JavaServer Faces. See JSF
JavaServer Pages. See JSP
JCaptcha 232
JConsole 347
JDBC 300
JDK 284
Jetty 347
jetty-management 348
JMX 347–349

enabling 347
JNDI 302
Johnson, Rod 305
JPA 146
JSF 5, 12, 39
JSP 6, 12, 38

request/response cycle 6
JUnit 322
just-Java 309
JVM 5
JWebUnit 322

K

key validation messages 167

L

l10n 283
Label 36

as alternative to message tags
288

constructor 85
example 202
introduction 32
markup 18, 110, 175
markup tags 59
models 111
usage 16

label
displaying formatted text

using labels 112–113
using the Label component

109–111
using the MultiLineLabel

component 111–112
language

general-purpose 38
variant 289

large collection 130
lasagna code 81
Latin 1 286
layered architecture 300

advantages 301
layering 301

layout
consistent, best way 193–195
consistent, bookmarkability

195
consistent, duplication 194
consistent, with markup inher-

itance 187–191
consistent, navigation 195
consistent, previewability

193–194
consistent, with panels 191–193
consistent, with plain pages

184–187
lazy collection 318
lazy initialization 229
LengthValidator 74
lightweight container 302
lines of code 83
Link 120

as a button 62
example 201, 214, 279
markup 18, 62
onClick() 11, 18, 57, 60, 63,

86, 120
skipping form processing 161
submit form 158
usage 120

link
click, redirect after 143
from database 114
download 228
external 115
to external site 114
favorite 115
navigating with 113–120
navigation using

BookmarkablePageLink
115–119

navigation using static links
113–114

navigation using wicket:link
119–120

responding to client actions
120–124

static 113
testing 329
using AjaxFallbackLink 122–

124
using ExternalLink 114–115
using Link 120–122
to Wicket page 115

list
choices 150
working with 216–217
working with, in forms 217–221

INDEX358
ListChoice 150
setMaxRows() 151

listener 71
ListenerInterfaceRequest-

Target 30
ListItem 56, 128

vs. WebMarkupContainer
128

ListMultipleChoice 152
ListView 55, 65

getListItemModel 130
getting the selected item 57,

60
item with Compound-

PropertyModel 129
large collections 130
limitations 262
markup 54
populateItem() 56, 60
refresh contents 100
usage 56, 128
using with database results

129
load 100

balancing 9, 88
LoadableDetachableModel 128,

273
description 84
load() 100
onAttach() 102
onDetach() 102

Lob annotation 315
Locale 200, 282
locale 324

selecting current 200–208
locale-dependent

part 290
text 284

localization 17, 85, 282
filename patterns 287
loading localized markup

289–291
looking up messages for com-

ponents, algorithm 288–
289

looking up messages for com-
ponents, mechanism 286

multiple languages 284–291
resource bundles or loading

localized markup 291
support for 283

Localization. See l10n
Localizer 283
localizing a message 170
log 336

log4j 346
example configuration 346

logging 88, 98, 345
logic

mixing in templates 13
separation from presentation

38–39
logical tier 300
loose coupling 301

M

maintainability 83
maintenance nightmare 187
Managed Beans 347
management console 349
managing state

HTTP protocol 8–9
storing state in session 10
storing state in URLs 9–10

manipulating markup attributes
133–135

ManyToOne annotation 315
mapping object to choice 154
markup

cleaning up 136–137
conditional 63, 161, 177
file, localized 289–291
introduction 32
location 15, 55
loop 124
manipulating attributes 133–

135
reloading 337
removing 136
tag, change 134
valid 137

markup hierarchy 187
modifying 181

markup inheritance 194
child 189
contributing to head 189
multiple layers 189
parent 188

MarkupContainer 218
isTransparentResolver() 189

master template 326
Matryoshka doll 102
Maven 45
maxlength 146
MBeans 347
memory 83

leak 307
usage 97, 101, 193

menu 185

message
displaying using a Feedback-

Panel 170–171
localizing 170

metadata 207, 309
tagging with annotations 309

MetaDataKey 207
minifying 338
minimize

JavaScript 338
state 97

MixedParamUrlCodingStrategy
335

mixing logic in templates 13
mode 336
model 39–42

alternative property expres-
sions 95–96

chain 102
CompoundPropertyModel

92–96
converting values 221
definition 82
description 84
detachable 96–102
doesn’t update 60
generic 104
getObject() 61, 87
inheritable 93, 95
introduction 33
list of models 84
LoadableDetachableModel

100–102
nesting 102–104
PropertyModel 90–91
serializing 88
standard models 84–96
static vs. dynamic 61, 86–88
using detachable models to

avoid serialization errors
98–100

using Model to avoid serializa-
tion errors 89–90

using the simple Model 84–90
using to avoid serialization

errors 89–90
value 110

Model 2 5
difference from Wicket 5
framework 39, 268
request/response cycle 6

Model model 84
Model View Controller. See MVC
Modelibra 320
ModelIteratorAdapter 217

INDEX 359
modifying tag attributes 147
modularization 200
monetary to String conversion

61
monitoring

an application 344–349
using JMX 347–349
using request logger 344–

347
mountBookmarkablePage 333
mounting 332
MultiLineLabel, rendered out-

put 111
multiple-field validation 164
multithreading 46
MVC 39–40, 82, 108

N

nationality 293
navigating using links 113–120
navigation 193

easy 195
testing 325

nested component 93, 174
newChildId() 125
newClientInfo() 261
newConverterLocator() 297
newline in text 111
newSession() 270
NotSerializableException 88
null values 144
NullPointerException 85
number 293

of sessions 345
of visible rows 151

NumberFormat 294
NumberValidator 164

O

object orientation 187
Object Relational Mapping. See

ORM
object-oriented design 26
object-oriented programming.

See OOP
Object-Relational Mapping. See

ORM
onAttach() 102
onBeforeRender() 211
onBlur() 257
onClick() 120, 244
onclick() 255

onComponentTag() 133, 175,
206, 234, 257

onComponentTagBody() 175,
294

onDetach() 102
one pass render 143
onError() 141, 145, 258
onInstantiation() 276
onPopulate() 127
onRenderHead() 259
onRequest() 260
onResourceRequested() 228
onRuntimeException() 343
onSubmit() 141, 145, 219,

258
onValidate() 165
OOP 10, 314
ORM 10, 300, 314

P

package name 15
package resource 224–226

including with auto-linking
226

performing header contribu-
tions 259

PackageResource example 225
Page 34–36, 75

example 15, 270
file location 15, 55
introduction 32
markup 16
markup filename 15, 55,

178
partial update 19
setHeaders 342

page
associated markup 35
bookmarkable 117, 268
hiding part of 131–132
indexing 229
layout 183–195
map 28, 31
navigation 215
partial update 19
protecting 274
refreshing 86
session-relative 268
store 88

Page Expired message 88
PageableListView 65

large collections 130
page-expired error page 342
PageMap 272

PageParameters 117
add() 117
example 117, 272
parsing 119

PagingNavigator 64
markup 65

Panel 75
empty panel 181
example 204, 214
inline panel 182
markup 178
markup filename 178
replacing 181
tags 181
testing 329
usage 179–180

panel
custom, testing 328–330
swapping 191, 194
using in a page 178

parameter
encoding 116
parsing 119

partial page update 19
passing state 268
password, reset 148
PasswordTextField 147

example 270
setResetPassword() 148
usage 148

Path 293
PatternValidator 164
performance 83, 193

implications of detaching 101
monitoring 345

persistence framework 313
persistent object, loading 318
PicoContainer 303
Plain Old Java Object. See POJO
POJO 39
populateItem 217, 220
popup list 151
portlet 215
post

form submission 142
redirect after 143

POSTDATA popup, preventing
142

presentation
layer 305
separation from logic 38–39
tier 300

preview 55, 179
previewability 193
primary key 98, 315

INDEX360
process events 30
production mode 336
programmatically modifying tags

134
programming

functional 14
imperative 14

property
expression 90
file 166
model 18

PropertyListView 129
PropertyModel 18, 90–91

autocreate objects 90
description 84
example 90, 273
usage 69

Prototype 21
proxy 310

factory 308
instead of direct reference

307
object 317

Q

QueryStringUrlEncoding-
Strategy 334

Quickmodels 320

R

radio button 151
RadioChoice 151

setPrefix() 152
setSuffix() 152

RadioGroup 152
redirection 142
reducing duplication 183
refactoring 38, 92, 95, 213

not safe with wicket:link
120

refreshing a page 86
RefreshingView 319

example 216, 252
registering an error message

165
regular expression 164
relational model 314
reloading

markup 337
resources 337

remember me 50
removing markup 136

render
redirect to 143
strategies 143

renderHead() 249, 259
renderString() 249
repeater 216

item-reuse strategies 219
using ListView 128
using RepeatingView 124–

127
repeating markup 54

and components with repeat-
ers 124–130

RepeatingView
example 124
limitations 262
newChildId 125
onPopulate 127

replace() 218
replaceComponentTagBody()

295
replaceWith() 218
Representational State Transfer.

See REST
Request 28
request 25

cycle 231, 343
listener 71
page 345
parameter 9, 119
processing 25–31

objects 25–31
steps 29–31

processing independently
from pages 223

request target, custom 231
request/response cycle, tradi-

tional 239
RequestCycle 28

onRuntimeException() 343
RequestCycleProcessor 28
RequestLogger 344–347

custom information 346
enabling 346–347

RequestLoggerSettings 346
RequestParameters 29
RequestTarget 28–29, 231
required input 144
requirement, changing 5
Reset link, example 207–208
reset password 148
resolving component 190
resource 223

Captcha 232–236
component-hosted 228

dynamically generated 226–
231

lazy initialization 229
not thread-safe 230
packaging with components

247
PDF, RTF, Excel, and so on

232–236
reloading 337
settings 340
shared 229–230
shared, initializing 230–231
utilization 301

resource bundle 17, 166, 286,
323

support 283
resource key 166–167

converters 163
IConverter 163
IConverter.type 163
Required 163

resourceKey() 166
ResourceLink 228
resource-lookup mechanism

291
ResourceModel 288

description 84
ResourceReference

example 225
ResourceStreamLocator 291
ResourceStreamRequestTarget

example 231
respond 30
Response 28
response

header setting 227
page 345

REST 9, 268
RestartResponseAtIntercept-

PageException 277
example 272

RESTful encoding 334
retaining input and skipping

processing 161
reusable

component 74, 177, 258–262
software module 31

reuse of template 194
RFC-1738 116
rich text editor 149
Rich Text Format. See RTF
row, visible, number of 151
RTF 232
runtime configuration 347

INDEX 361
S

scalability 97
screen, partial update 239
Scriptaculous 242, 258–259
script-injection attack 113
search engine 52
second-level cache 318
section 508 20
security 331
select tag 206
selected value 150
selection component 149
Selenium 322
separation

of concerns 38, 53
of layers 304

Serializable 88
serialization 88

problems with 98
service 305

layer 300
object 306

service locator pattern 302, 307,
309, 312

problem with 310
servlet

container 311
listener 310

Servlet API 10
web application directory 224

Session 26, 207, 269–270
creation 50
custom class 49
error() 169
factory method 50
info() 169
invalidating 273
Session.invalidate() 274
Session.invalidateNow() 274
setLocale() 324, 328
warn() 169

session 25
active 347
expiration 271
number of 345
per request 315
state 97
timeout 49

session-relative
page 268
request 330–331
URL 331

SessionStore 27
setAttachmentHeader() 227

setChainedModel() 103
setConvertedInput() 212
setCryptFactory() 331
setDefaultFormProcessing()

161
setHeaders() 227, 342
setItemReuseStrategy() 219
setLocale() 324, 328
setMaxRows() 151
setMetaData() 207
setObject() 41, 145
setOutputMarkupId() 124, 244,

253, 262
setOutputMarkupPlaceholder-

Tag() 132, 177
setPersistent() 148
setPrefix() 152
setRedirect() 142
setRenderBodyOnly() 136
setRequestLoggerEnabled()

346
setRequestTarget() 231, 260
setRequired() 72, 162, 201
setResetPassword() 148
setResourcePollFrequency()

340
setResponsePage() 30, 63, 71,

120, 201
setSuffix() 152
setupRequestAndResponse()

324
setVisible() 131, 176
ShoppingCartPanel 75

code 77
markup 76
usage 77

showing component 63, 131
SimpleAttributeModifier 43,

147
single-threaded programming

model 31
singleton 306
skipping form processing 70
Smalltalk 39
software module, reusable 31
spaghetti code 81
Spring 26, 39, 303

bootstrapping 310
framework 299, 305–306
layering Wicket applications

304–313
MVC 5
support for Hibernate 315
transaction annotations

316

Spring bean annotation 309–
312

using with non-Wicket objects
312–313

SpringBean 309
annotation, example 236

SpringWebApplicationFactory
311

SQL
injection 147
shielding from, with Hiber-

nate 314
stack trace 338, 341
standards compliance 137
Star Wars 3
startPage() 322
startPanel() 328
state

encoding in URLs 9–10
management 10
minimizing 97
passing 268
storing in component 18
storing in session 10

StatelessForm 271
example 270

static
link 113
model 61
model vs. dynamic 86–88
typing 11, 27, 38

storing values in cookies 148
strategy pattern 303
StringBuilder 249
StringHeaderContributor 248
StringRequestTarget 260
StringResourceModel

description 84
StringResourceStream 227

example 231
StringValidator 164
Stripes 5
stripping

comments 338
whitespace 338

Struts 39
stylesheet 180
submit button 140
SubmitLink 158

example 231
setDefaultFormProcessing()

161
substitution variable 166
Sun JCE encryption 331
swapping panels 191, 194

INDEX362
Swing 41
switch locale 324, 328
synchronization 97

methods 308
system property 337

T

tag attribute, modifying 147
tag library 13
TagTester 324
Tapestry 5
Teachscape 7
template

loading 291
method design pattern 255
reuse 194

templating 214
testing

Ajax links 325
applications 322–330
custom panels 328–330
DOM tags 324
feedback messages 327
forms 326–327
framework 322
label values 322–324
link testing 324–326
links 329
list view 329
navigation 325
rendered page 326
submit 326
template 326
using custom application

328
using custom session 328
using DI 303
validators 327–328

TestPanelSource 329
text

displaying with label compo-
nents 109–113

dynamic 109
formatted 111–112
locale-dependent 284
newline in 111

TextArea 148
TextField

example 201, 234, 270
markup 22, 68
maxlength 146
setRequired() 72
update value 23
usage 69, 146

TextTemplateHeader-
Contributor 248–249

Thai 202, 287
thread-safety 31

rules 31
three-tiered service architec-

ture 300–304
TinyMCE 149
toggling visibility using a check

box 155
TopLink 10
toString() 110
transaction 307

annotation 316
demarcation 301

transient reference 99
translation 323
transparent resolving 190
type conversion 9

U

ugly URL 117
uncaught exception 343
unicode 284, 287

escaped 286
unit testing 322
unmanaged framework 309
updating part of page 19
UploadStatusResource 230
URL 114

Ajax and bookmarking 335
bookmarkable 331
clean 332
emailing to Wicket page

115
encryption 331
escaping 116
maximum length 117
optimization 330–336
session relative 331
stable 229
ugly 117
validator 164

URL encoding 333
examples 333
hybrid 335
indexed parameters 335
key/value pair 334
mixed indexed and query

string 335
provided by Wicket 333
query string 334
strategies 332–336

use check 337

user
authorization level 132
feedback 342

user input
converting 163
validating 162–166

User-Agent request header 261
UserPanel, localizing 284–285
UTF-8 287, 290

V

valid markup 137
validating two fields 164
validation 72, 145, 212

failed 165
regular expression 164

validator
base class 165
custom 165
EmailAddressValidator 164
EqualPasswordInput-

Validator 164
finding all 74
NumberValidator 164
PatternValidator 164
standard 163–164
StringValidator 164
testing 327–328
UrlValidator 164

value
object 319
selected 150

variable substitution 166
Velocity Tools 13
versioning 215
ViewRoot 34
visibility 131

change using Ajax 177
toggling using a check box

155

W

warn() 169
Web 2.0 239

effect 124
web application 7

factory interface 311
web designer, working with 13
web MVC 5
web.xml 310, 337
webapp directory 311
WebClientInfo 261

INDEX 363
WebMacro 13
WebMarkupContainer 94, 126,

175
group for Ajax updates 180
onComponentTag() 175
onComponentTagBody() 175
vs. ListItem 128

WebRequestCycle 262
WebResource 227
WebResponse 227
WebSession 270
websites vs. web applications

7–8
WebWork 5
Wicket

abort exceptions, class hierar-
chy 277

AbortWithWebErrorCode-
Exception 342

Application 26
application settings 261
authentication 269–274
authentication, example 270–

272
authorization 274–280
authorization strategy 274–

276
authorization, actions 279
auto link 251
avoiding code duplication

200, 278
behaviors 42–44
bookmarkable pages 268
browser caching 229
compound components 199,

204–206
compound components, syn-

chronizing models 211
compound identifiers 323
compound input compo-

nents 209–213
configuration 143, 337
configuring components 203
configuring to use Spring 306
conversion mechanism 83
conversions 293–298
conversions, customizing

295–298
conversions, overriding for an

application 297–298
conversions, overriding for

one component 296–297
conversions, using converters

294
conversions, using models 293

converters 221, 293–295
CSS 223
custom request targets 231
custom resource loading 291–

293
definition 5
domain-specific abstractions

14
domain-specific components

213
dos and don’ts 49, 64, 121,

147, 194, 336, 339
download links 228
extending/configuring com-

ponents, using inheritance
or composition 42–44

filter 49
final classes and methods 221,

259
form processing 209, 212
generic components 199
header contributions 247–

251
header contributions, behav-

iors 248
header contributions, per-

forming with package
resources 259

header contributions, using
templates 249

hiding components 280
hiding implementation details

202
images 223
indexing pages 229
initializers 230–231
interception URLs 272
Java components 33–34
JavaScript 223
just HTML 12–13
just Java 11
layering applications with

Spring 304–313
list of components 106
loading templates 291
logging facility 345
matching component hierar-

chy with markup structure
37–38

metadata 207
model 39–42
model, introduction 33
models, converting values 221
nested form components 208
no code in markup 12

package resources, perform-
ing header contributions
259

packaged resources 224–226
packaging resources with com-

ponents 247
Page 34–35
page map 28
partial screen updates 239
passing state 268
pitfalls of using Hibernate

with 317
previewing components 206
problems it solves 5–10
processing requests indepen-

dently from pages 223
projects that implement

authorization and authenti-
cation 281

protecting pages 274
protecting pages, example

276
repeaters 216
repeaters, item-reuse strate-

gies 219
Request 28
request processing 25–31
request processing, objects

25–29
request processing, steps 29–

31
RequestCycle 28
RequestCycleProcessor 28
RequestTarget 29
Response 28
reusable components 199,

234–236, 258–262
security 267
self-contained components

224–226, 259
servlet 49
Session 26
session-relative pages 268
sessions 269–270
sessions, expiration 271
SessionStore 27
setting response headers

227
settings 276
stable URLs 229
switching between develop-

ment and deployment
mode 337

templating 214
the right abstractions 13–14

INDEX364
Wicket (continued)
traditional request/response

cycle 239
transparent state management

10
URL encodings 333
using factory methods to cre-

ate custom components
210, 254, 256

using indirection in custom
components 255

validation 212
versioning 215
what it is 10–14
what it is not 3
why reusable components 200
why Wicket 4–10
WicketRuntimeException

343
working with lists 216–217
working with lists in forms

217–221
XML namespace 137

Wicket and Ajax 239–247
advantages of using behav-

iors 258
behaviors 245–247
components 243–245
debug window 242
engine 242–243
goals 242
gotchas 262–263
JavaScript event handlers 245
request/response cycle 240
requirements for repainting

components 244
updating components 253
using third-party engines

258–261
Wicket components

hiding 278
hierarchy 13
identifier 19
instantiation listener 275
introduction 31–44
and markup 35
page 34–35
programmatically disabling

278
replacement 213–221, 261–

262
replacement, gotchas 215

Wicket examples
Ajax behavior 247
Ajax component 246

custom request target 29
custom session 27
introduction 24
Label 36
URL converter 296
using Ajax component 244

Wicket filter 311
wicket id 19
Wicket identifier, adding to

markup 58
Wicket localization

filename patterns 287
loading localized markup

289–291
looking up messages for com-

ponents, algorithm 288–
289

looking up messages for
components, mechanism
286

multiple languages 284–291
resource bundles or loading

localized markup 291
support 283

Wicket resources 223
Captcha 232–236
component-hosted 228
dynamically generated 226–

231
lazy initialization 229
PDF, RTF, Excel, and so on

232–236
shared 229–230

Wicket Stuff 242, 248, 281
Wicket tag 338

removing 136
wicket:child 188
wicket:container 137
wicket:enclosure 132, 273
wicket:extend 189
wicket:fragment 182
wicket:head 179, 189, 250–

251
wicket:id 32, 54, 58
wicket:link 251, 291
wicket:message 285–288
wicket:panel 76, 179, 250,

273
wicket:remove 55, 206

wicket.properties 230
wicket:link 119, 179, 185, 193

not refactoring safe 120
wicket-ajax.js 242, 255
wicket-ajax-debug.js 242
wicket-ajax-debug-drag.js 242

wicketAjaxGet 255
wicket-auth-roles 281
wicket-contrib-yui 248
wicket-ioc 308
wicket-jmx 347
WicketMessage 56
WicketRuntimeException 90,

94, 343
wicket-security-swarm 281
wicket-security-wasp 281
wicket-spring 309, 311

using proxies from 308–309
wicket-spring-annot 309
WicketTester 322

assertComponentOnAjax-
Response() 325

assertContains() 324
assertErrorMessages() 328
assertLabel() 322
assertListView() 329
assertModelValue() 324
assertNoErrorMessage() 328
assertNoInfoMessage() 328
assertRenderedPage() 326
clickLink() 325, 329
getTagById() 324
newFormTester() 326
setupRequestAndResponse()

324
startPage() 322
startPanel() 328

WicketWebBeans 320
widget, defined 32
wiki 262
Window 34
wrapping a component around

child markup 189–191

X

XML
configuring Spring with 306
declaration 290
message bundle 286

XMLHttpRequest 239
XSS 113

Y

Yahoo User Interface. See YUI
YUI 242, 248

library 242

	Wicket in Action
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code
	Author Online
	About the authors
	About the title
	About the cover illustration

	Part 1 - Getting started with Wicket
	What is Wicket?
	1.1 How we got here
	1.1.1 A developer’s tale
	1.1.2 What problems does Wicket solve?

	1.2 Wicket in a nutshell
	1.2.1 Just Java
	1.2.2 Just HTML
	1.2.3 The right abstractions

	1.3 Have a quick bite of Wicket
	1.3.1 Hello, uhm … World!
	1.3.2 Having fun with links
	1.3.3 The Wicket echo application

	1.4 Summary

	The architecture of Wicket
	2.1 How Wicket handles requests
	2.1.1 Request-handling objects
	2.1.2 The processing steps involved in request handling
	2.1.3 Thread-safety

	2.2 Introducing Wicket components
	2.2.1 The component triad
	2.2.2 Wicket’s Java components
	2.2.3 Page: one component to rule them all
	2.2.4 Components and markup
	2.2.5 Separation of presentation and logic: a good thing?
	2.2.6 The component’s data brokers: models
	2.2.7 Extending components with behaviors

	2.3 Summary

	Building a cheesy Wicket application
	3.1 Introducing Cheesr
	3.1.1 Setting up shop
	3.1.2 Designing the user interface

	3.2 Creating the store front
	3.2.1 Cutting to the cheese
	3.2.2 Adding the shopping cart
	3.2.3 Going to check out
	3.2.4 Adding pagination to the list of cheeses

	3.3 Creating the checkout page
	3.3.1 Adding the billing address form
	3.3.2 Adding validation to the billing-address form
	3.3.3 Creating a reusable shopping cart

	3.4 Summary

	Part 2 - Ingredients for your Wicket applications
	Understanding models
	4.1 What are models?
	4.2 A taste of the standard models
	4.2.1 Using the simple Model
	4.2.2 Using PropertyModels for dynamic models
	4.2.3 Saving code with CompoundPropertyModels

	4.3 Keeping things small and fresh: detachable models
	4.3.1 What is detaching?
	4.3.2 Working around a serialization problem with detachable models
	4.3.3 Using LoadableDetachableModel

	4.4 Nesting models for fun and profit
	4.5 Summary

	Working with components: labels, links, and repeaters
	5.1 What are components?
	5.2 Displaying text with label components
	5.2.1 Using the Label component to render text
	5.2.2 Displaying multiple lines using a MultiLineLabel
	5.2.3 Displaying formatted text using labels

	5.3 Navigating using links
	5.3.1 Linking to documents using static links
	5.3.2 Using ExternalLink to render links programmatically
	5.3.3 Linking to Wicket pages with BookmarkablePageLinks
	5.3.4 Adding bookmarkable links automatically with wicket:link

	5.4 Responding to client actions with a link
	5.4.1 Using Link to respond to client actions
	5.4.2 Using AjaxFallbackLink to respond to client actions

	5.5 Using repeaters to repeat markup and components
	5.5.1 Using the RepeatingView to repeat markup and components
	5.5.2 Using a ListView to repeat markup and components

	5.6 Performing common tasks with components
	5.6.1 Hiding parts of a page
	5.6.2 Manipulating markup attributes
	5.6.3 Removing excess markup

	5.7 Summary

	Processing user input using forms
	6.1 What are forms?
	6.2 How does form processing work?
	6.2.1 Submitting a form from the browser to the server
	6.2.2 Processing the form submission on the server

	6.3 Components for text input
	6.3.1 Using a TextField to process single-line text
	6.3.2 Using a PasswordTextField to process a password
	6.3.3 Using a TextArea to process multiline text

	6.4 Selecting from a list of items
	6.4.1 Selecting a single value from a list of choices
	6.4.2 Selecting multiple values from a list of choices
	6.4.3 Mapping an object to a choice and back using a ChoiceRenderer
	6.4.4 Using check boxes for boolean properties

	6.5 Components for submitting form data
	6.5.1 Using buttons to submit data
	6.5.2 Using links to submit data
	6.5.3 Using Ajax to submit data
	6.5.4 Skipping Wicket’s form processing

	6.6 Validating user input
	6.6.1 Making a field required
	6.6.2 Converting user input from strings to domain types
	6.6.3 Using Wicket’s supplied validators
	6.6.4 Writing your own validator

	6.7 Providing feedback
	6.7.1 Feedback messages
	6.7.2 Using the info, error, and warn methods for general messages
	6.7.3 Displaying feedback messages using a FeedbackPanel

	6.8 Summary

	Composing your pages
	7.1 Grouping components
	7.1.1 Grouping components on a page: WebMarkupContainer
	7.1.2 Reusing grouped components by creating a Panel
	7.1.3 Grouping components using fragments

	7.2 Page composition: creating a consistent layout
	7.2.1 Creating consistent layouts using plain pages
	7.2.2 Creating consistent layouts using markup inheritance
	7.2.3 Creating consistent layouts using panels
	7.2.4 Which is the best?

	7.3 Summary

	Part 3 - Going beyond Wicket basics
	Developing reusable components
	8.1 Why create custom reusable components?
	8.2 Creating a component that selects the current locale
	8.2.1 What are reusable custom components?
	8.2.2 Implementing the locale-selector component
	8.2.3 Creating a compound component
	8.2.4 Adding a Reset link

	8.3 Developing a compound component: DateTimeField
	8.3.1 Composite input components
	8.3.2 Embedding form components
	8.3.3 Synchronizing the models of the embedded components

	8.4 Developing a discount list component
	8.4.1 The container
	8.4.2 The read-only discounts list
	8.4.3 The edit-discounts list

	8.5 Summary

	Images, CSS, and scripts: working with resources
	9.1 Using packaged resources
	9.1.1 Including packaged resources using auto-linking

	9.2 Building export functionality as a resource
	9.2.1 Creating the resource
	9.2.2 Letting a component host the resource
	9.2.3 Making the export available as a shared resource
	9.2.4 Initializing the shared resource
	9.2.5 An alternative implementation

	9.3 Resources and third-party libraries
	9.3.1 A JCaptcha image component
	9.3.2 Implementing a complete JCaptcha form

	9.4 Summary

	Rich components and Ajax
	10.1 Asynchronous JavaScript and XML (Ajax)
	10.1.1 Ajax explained
	10.1.2 Ajax support in Wicket
	10.1.3 Ajax components
	10.1.4 Ajax behaviors

	10.2 Header contributions
	10.2.1 Using header-contributing behaviors
	10.2.2 Using the header contributor interface
	10.2.3 Using the wicket:head tag

	10.3 Ajaxifying the cheese discounts
	10.3.1 Implementing in-place editing
	10.3.2 Refactoring the discount list
	10.3.3 How AjaxEditableLabel works

	10.4 Creating your own Ajax components
	10.4.1 Using third-party Ajax engines
	10.4.2 Detecting client capabilities

	10.5 Gotchas when working with Wicket and Ajax
	10.6 Summary

	Part 4 - Preparing for the real world
	Securing your application
	11.1 Session-relative pages
	11.2 Implementing authentication
	11.2.1 Keeping track of the user
	11.2.2 Authenticating the user
	11.2.3 Building a user panel
	11.2.4 Building a page for signing out

	11.3 Implementing authorization
	11.3.1 Introducing authorization strategies
	11.3.2 Protecting the discounts page
	11.3.3 Disabling the Edit link for unauthorized users

	11.4 Summary

	Conquer the world with l10n and i18n
	12.1 Supporting multiple languages
	12.1.1 Localizing the UserPanel
	12.1.2 Using <wicket:message> tags
	12.1.3 The message-lookup algorithm
	12.1.4 Localized markup files

	12.2 Customizing resource loading
	12.3 Localized conversions
	12.3.1 Wicket converters
	12.3.2 Custom converters

	12.4 Summary

	Multitiered architectures
	13.1 Introducing the three-tiered service architecture
	13.1.1 Advantages of utilizing a layered architecture
	13.1.2 Who is in charge of the dependencies?
	13.1.3 Code without dependency injection
	13.1.4 Dependency injection to the rescue

	13.2 Layering Wicket applications using Spring
	13.2.1 Spring time!
	13.2.2 The simplest way to configure Wicket to use Spring
	13.2.3 Using proxies instead of direct references
	13.2.4 Using proxies from the wicket-spring project
	13.2.5 Wicket’s Spring bean annotations
	13.2.6 Using Spring bean annotations with objects that aren’t Wicket components

	13.3 Implementing the data tier using Hibernate
	13.3.1 Introducing Hibernate
	13.3.2 Configuring Hibernate
	13.3.3 Implementing data access objects using Hibernate
	13.3.4 Wicket/Hibernate pitfalls

	13.4 Summary

	Putting your application into production
	14.1 Testing your Wicket application
	14.1.1 Unit-testing Hello, World
	14.1.2 Having fun with link tests
	14.1.3 Testing the Wicket Echo application
	14.1.4 Testing validators on Cheesr’s checkout page
	14.1.5 Testing a panel directly with the ShoppingCartPanel

	14.2 Optimizing URLs for search engines and visitors
	14.2.1 Bookmarkable requests vs. session-relative requests
	14.2.2 Extreme URL makeover: mounting and URL encodings

	14.3 Configuring your application for production
	14.3.1 Switching to deployment mode for optimal performance
	14.3.2 Providing meaningful error pages

	14.4 Knowing what is happening in your application
	14.4.1 Logging requests with RequestLogger
	14.4.2 Using JMX to work under the hood while driving

	14.5 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

